Skip to main content

Dynamic brittle fracture with a new energy limiter-based scalar damage model

Abstract

We present a new scalar damage model for dynamic brittle fracture. In contrast to existing damage theories, the internal damage variable is alternatively derived based on energy limiter theory, directly tightening to its physical meaning. Finite element implementation for the developed approach at small strain towards localized brittle failure is given. We integrate the energy decomposition into the theory to eliminate nonphysical damaged phenomenon when cracks develop in compression domain, while the crack band theory is employed to treat mesh sensitivity. As a result, the current model does not involve any length scale parameter, and therefore nor diffusive equation of damage evolution characterizing the degradation of material stiffness is required. Two simple methods for estimating crack-tip velocity and dissipated energy are provided. Discrete forms of governing equation are solved by a simple staggered scheme in an effective manner. Several numerical examples for dynamic brittle fracture including crack branching are studied.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53:565–596

    MathSciNet  MATH  Article  Google Scholar 

  2. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    MATH  Article  Google Scholar 

  3. Krugger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57:109–143

    Article  Google Scholar 

  4. Zhang X, Bui TQ (2015) A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures. Eng Comput 32(2):473–497

    Article  Google Scholar 

  5. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  6. Rots JG, Nauta P, Kuster GMA, Blaauwendraad J Smeared crack approach and fracture localization in concrete. HERON 30(1)

  7. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39(19):3391–3403

    MATH  Article  Google Scholar 

  8. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    MathSciNet  MATH  Article  Google Scholar 

  9. Nguyen THA, Bui TQ, Hirose S (2018) Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements. Comput Methods Appl Mech Eng 328:498–541

    MathSciNet  MATH  Article  Google Scholar 

  10. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778

    MathSciNet  MATH  Article  Google Scholar 

  11. Kachanov L (1958) Time of the rupture process under creep condition. Izv Akad Nauk SSSR Otdelenie Tekhn Nauk 8:26–31

    Google Scholar 

  12. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth - part i: yield criteria and flow rule for porous media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  13. Chaboche J (1981) Continuum damage mechanics - a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247

    Article  Google Scholar 

  14. Chaboche J (1984) Continuum damage mechanics: Part ii - damage growth, crack initiation, and crack growth. J Appl Mech 55:65–72

    Article  Google Scholar 

  15. Lemaitre J (1986) Local approach of fracture. Eng Fract Mech 25:523–537

    Article  Google Scholar 

  16. Pijaudier-Cabot G, Bazant Z, Tabara M (1988) Comparison of various models for strain-softening. Eng Comput 5:141–150

    Article  Google Scholar 

  17. Oliver J (1989) A consistent characteristic length for smeared cracking models. J Eng Mech 28(2):461–474

    MATH  Google Scholar 

  18. Jirásek M, Bauer M (2012) Numerical aspects of the crack band approach. Comput Struct 110–111:60–78

    Article  Google Scholar 

  19. Rizzi E, Carol I, Willam K (1995) Localization analysis of elastic degradation with application to scalar damage. J Eng Mech 121:541–554

    Article  Google Scholar 

  20. Kurumatani M, Terada K, Kato J, Kyoya T, Kashiyama K (2016) An isotropic damage model based on fracture mechanics for concrete. Eng Fract Mech 155:49–66

    Article  Google Scholar 

  21. Niazi MS, Wisselink HH, Meinders T (2013) Viscoplastic regularization of local damage models: revisited. Comput Mech 51:203–216

    Article  Google Scholar 

  22. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    MATH  Article  Google Scholar 

  23. Pijaudier-Cabot G, Haidar K, Dube JF (2004) Non-local damage model with evolving internal length. Int J Numer Anal Meth Geomech 28:633–652

    MATH  Article  Google Scholar 

  24. Wolff C, Richart N, Molinari J-F (2014) A non-local continuum damage approach to model dynamic crack branching. Int J Numer Meth Eng 101:933–949

    MathSciNet  MATH  Article  Google Scholar 

  25. Bellis MLD, Wriggers P, Hudobivnik B, Zavarise G (2018) Virtual element formulation for isotropic damage. Finite Elem Anal Des 144:38–48

    MathSciNet  Article  Google Scholar 

  26. Vuong CD, Bui TQ, Hirose S (2021) Enhancement of the smoothing gradient damage model with alternative equivalent strain estimation for localization failure. Eng Fract Mech 258:108057

    Article  Google Scholar 

  27. Admed B, Voyiadjis GZ, park T (2021) A nonlocal damage model for concrete with three length scales. Comput Mech 68:461–486

    MathSciNet  MATH  Article  Google Scholar 

  28. Bui TQ, Hu X (2021) A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech 248:107705

    Article  Google Scholar 

  29. Bleyer J, Molinari J-F (2017) Microbranching instability in phase-field modelling of dynamic brittle fracture. Appl Phys Lett 110:151903

    Article  Google Scholar 

  30. Aldakheel F, Wriggers P, Miehe C (2018) A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833

    MathSciNet  MATH  Article  Google Scholar 

  31. Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348(10):680–711

    MathSciNet  MATH  Article  Google Scholar 

  32. Volokh KY (2004) Nonlinear elasticity for modeling fracture of isotropic brittle solids. J Appl Mech 71(1):141–143

    MathSciNet  MATH  Article  Google Scholar 

  33. Volokh KY (2007) Hyperelasticity with softening for modeling materials failure. J Mech Phys Solids 55(10):2237–2264

    MathSciNet  MATH  Article  Google Scholar 

  34. Volokh KY (2010) On modeling failure of rubber-like materials. Mech Res Commun 37(8):684–689

    MATH  Article  Google Scholar 

  35. Trapper P, Volokh KY (2010) Modeling dynamic failure in rubber. Int J Fract 162:245–253

    MATH  Article  Google Scholar 

  36. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    MathSciNet  MATH  Article  Google Scholar 

  37. Liu G, Li Q, Msekh MA, Zuo Z (2016) Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput Mater Sci 121:35–47

    Article  Google Scholar 

  38. Song J, Belytschko T (2009) Cracking node method for dynamic fracture with finite elements. Int J Numer Meth Eng 77(33):360–385

    MathSciNet  MATH  Article  Google Scholar 

  39. Hirmand MR, Papoulia KD (2019) Block coordinate descent energy minimization for dynamic cohesive fracture. Comput Methods Appl Mech Eng 354:663–688

    MathSciNet  MATH  Article  Google Scholar 

  40. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    MATH  Article  Google Scholar 

  41. Ambati M, Gerasimov T, Lorenzis LD (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    MathSciNet  MATH  Article  Google Scholar 

  42. Bui TQ, Tran HT (2021) A localized mass-field damage model with energy decomposition: formulation and FE implementation. Comput Methods Appl Mech Eng 387:114134

    MathSciNet  MATH  Article  Google Scholar 

  43. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(3):797–826

    MathSciNet  MATH  Article  Google Scholar 

  44. Kuhn C, Muller R (2010) A continuum phase field model for fracture. Eng Fract Mech 99:3625–3634

    Article  Google Scholar 

  45. Dimitrijevic BJ, Hackl K (2008) A method for gradient enhancement of continuum damage models. Tech Mech 28:43–52

    Google Scholar 

  46. Newmark NM (1959) A method of computation for structural dynamics, proceedings of ASCE. J Eng Mech 85:67–94

  47. Kalthoff J, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185–195

    Google Scholar 

  48. Kalthoff J (2000) Modes of dynamic shear failure in solids. Int J Numer Meth Eng 101:1–31

    Google Scholar 

  49. Lloberas-Valls O, Huespe AE, Oliver J, Dias IF (2016) Strain injection techniques in dynamic fracture modeling. Comput Methods Appl Mech Eng 308:499–534

    MathSciNet  MATH  Article  Google Scholar 

  50. Cusatis G, Rezakhani R, Schauffert EA (2017) Discontinuous cell method (DCM) for the simulation of cohesive fracture and fragmentation of continuous media. Eng Fract Mech 170:1–22

    Article  Google Scholar 

  51. Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641–658

    MathSciNet  MATH  Article  Google Scholar 

  52. Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw 122:31–49

    Article  Google Scholar 

  53. Zhou F, Molinari J-F, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72:1383–1410

    Article  Google Scholar 

  54. Ožbolt J, Bošnjak J, Sola E (2013) Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int J Solids Struct 50(25–26):4270–4278

    Article  Google Scholar 

Download references

Acknowledgements

Hung Thanh Tran is gratefully acknowledged the Japanese Government MEXT scholarship for his Integrated Doctoral Education Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinh Quoc Bui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bui, T.Q., Tran, H.T. Dynamic brittle fracture with a new energy limiter-based scalar damage model. Comput Mech 69, 1323–1346 (2022). https://doi.org/10.1007/s00466-022-02143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02143-4

Keywords

  • Dynamic fracture
  • Scalar damage model
  • Dynamic crack branching
  • Energy limiter
  • Energy decomposition
  • FEM