Skip to main content

Temporally stabilized peridynamics methods for shocks in solids


The computational methods for the shocks modeling would face two major challenges: (1) the severe damage with large deformations and (2) the intermittent waves. Peridynamics (PD) takes the integral form of its governing equation and shows exceeding advantages in modeling large deformation and severe damage. On the other hand, the propagation of intermittent wave within the PD based numerical system often experiences oscillatory instability. It can be attributed to the instability in time domain and the zero energy mode. Aiming for addressing such issues, the temporally stabilized PD methods are proposed in the present work. The stabilization force component is introduced and the general framework of stabilized PD methods is established. The formulation of the corresponding force state is proposed based on the features of the spurious oscillations. The case studies indicate that the stabilized PD methods are capable of effectively suppressing the nonphysical oscillations and are well-suited for the bond-based as well as the state-based PD formulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T (2016) A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int J Impact Eng 87(1):83–94

    Article  Google Scholar 

  2. 2.

    Baek J, Chen JS, Zhou G, Arnett KP, Hillman MC, Hegemier G, Hardesty S (2021) A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation. Comput Mech 67(6):1601–1627

    MathSciNet  Article  Google Scholar 

  3. 3.

    Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23(3):622–636

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bažant ZP, Luo W, Chau VT, Bessa MA (2016) Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J Appl Mech 83(11):111004

    Article  Google Scholar 

  5. 5.

    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  Google Scholar 

  6. 6.

    Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Hoboken

    MATH  Google Scholar 

  7. 7.

    Bessa M, Foster J, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264

    MathSciNet  Article  Google Scholar 

  8. 8.

    Butt SN, Timothy JJ, Meschke G (2017) Wave dispersion and propagation in state-based peridynamics. Comput Mech 60(5):725–738

    MathSciNet  Article  Google Scholar 

  9. 9.

    Caramana EJ, Shashkov MJ, Whalen PP (1998) Formulations of artificial viscosity for multi-dimensional shock wave computations. J Comput Phys 144(1):70–97

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dukowicz JK (1985) A general, non-iterative Riemann solver for Godunov’s method. J Comput Phys 61(1):119–137

  11. 11.

    Foster JT, Xu X (2018) A generalized, ordinary, finite deformation constitutive correspondence model for peridynamics. Int J Solids Struct 141:245–253

    Article  Google Scholar 

  12. 12.

    Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81(10):1242–1258

    Article  Google Scholar 

  13. 13.

    Gerstle W, Sau N, Aguilera E (2007) Micropolar peridynamic constitutive model for concrete. IASMiRT, Toronto

    Google Scholar 

  14. 14.

    Gibbs JW (1899) Fourier’s series. Nature 59(1539):606

  15. 15.

    Godunov SK (1959) A difference scheme for numerical computation of discontinuous solutions of equations in fluid dynamics. Math Sb 47:271–306

    MATH  Google Scholar 

  16. 16.

    Gu X, Zhang Q, Huang D, Yv Y (2016) Wave dispersion analysis and simulation method for concrete shpb test in peridynamics. Eng Fract Mech 160:124–137

    Article  Google Scholar 

  17. 17.

    Han F, Liu S, Lubineau G (2020) A dynamic hybrid local/nonlocal continuum model for wave propagation. Comput Mech 67:385–407

    MathSciNet  Article  Google Scholar 

  18. 18.

    Harten A, Engquist B, Osher S, Chakravarthy SR (1987) Uniformly high order accurate essentially non-oscillatory schemes, iii. In: Yousuff Hussaini M, van Leer B, Van Rosendale J (eds) Upwind and high-resolution schemes, pp 218–290

  19. 19.

    Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217–220(4):247–261

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90(2):141–151

    Article  Google Scholar 

  21. 21.

    Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Technical report, Los Alamos National Lab NM

  22. 22.

    Lapidus L, Pinder GF (2011) Numerical solution of partial differential equations in science and engineering. Wiley, Hoboken

    MATH  Google Scholar 

  23. 23.

    Madenci E, Oterkus E (2014) Peridynamic theory. Springer, Berlin

    Book  Google Scholar 

  24. 24.

    Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219

    MathSciNet  Article  Google Scholar 

  25. 25.

    Mitchell JA (2011) A nonlocal ordinary state-based plasticity model for peridynamics. Technical report, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

  26. 26.

    Roth MJ, Chen JS, Danielson KT, Slawson TR (2016) Hydrodynamic meshfree method for high-rate solid dynamics using a Rankine–Hugoniot enhancement in a Riemann-scni framework. Int J Numer Methods Eng 108(12):1525–1549

    MathSciNet  Article  Google Scholar 

  27. 27.

    Roth MJ, Chen JS, Slawson TR, Danielson KT (2016) Stable and flux-conserved meshfree formulation to model shocks. Comput Mech 57(5):773–792

    MathSciNet  Article  Google Scholar 

  28. 28.

    Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77(2):439–471

    MathSciNet  Article  Google Scholar 

  29. 29.

    Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  Article  Google Scholar 

  30. 30.

    Silling SA, Askari A (2014) Peridynamic model for fatigue cracking. Technical report, SAND2014-18590. Sandia National Laboratories, Albuquerque

  31. 31.

    Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  32. 32.

    Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    MathSciNet  Article  Google Scholar 

  33. 33.

    Tupek M, Radovitzky R (2014) An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J Mech Phys Solids 65:82–92

    MathSciNet  Article  Google Scholar 

  34. 34.

    Tupek MR, Rimoli JJ, Radovitzky R (2013) An approach for incorporating classical continuum damage models in state-based peridynamics. Comput Methods Appl Mech Eng 263(8):20–26

    MathSciNet  Article  Google Scholar 

  35. 35.

    Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wilbraham H (1848) On a certain periodic function. Camb Dublin Math J 3:198–201

    Google Scholar 

  37. 37.

    Wildman RA (2019) Discrete micromodulus functions for reducing wave dispersion in linearized peridynamics. J Peridynamics Nonlocal Model 1(1):56–73

    MathSciNet  Article  Google Scholar 

  38. 38.

    Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190:39–52

    Article  Google Scholar 

  39. 39.

    Wilkins ML (1980) Use of artificial viscosity in multidimensional fluid dynamic calculations. J Comput Phys 36(3):281–303

    MathSciNet  Article  Google Scholar 

  40. 40.

    Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  41. 41.

    Yaghoobi A, Chorzepa MG (2017) Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 169:238–250

    Article  Google Scholar 

  42. 42.

    Zhang Q (2017) Finite difference methods for partial differential equations. China Science Publishing, Beijing

    Google Scholar 

  43. 43.

    Zhang X, Xu Z, Yang Q (2019) Wave dispersion and propagation in linear peridynamic media. Shock Vib 9:9528978

    Google Scholar 

  44. 44.

    Zhou G, Hillman M (2020) A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids. Comput Part Mech 7(2):365–375

    Article  Google Scholar 

  45. 45.

    Zhou X, Wang Y, Shou Y, Kou M (2018) A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Eng Fract Mech 188:151–183

    Article  Google Scholar 

  46. 46.

    Zhu QZ, Ni T (2017) Peridynamic formulations enriched with bond rotation effects. Int J Eng Sci 121:118–129

    MathSciNet  Article  Google Scholar 

  47. 47.

    Zimmermann M (2005) A continuum theory with long-range forces for solids. PhD thesis, Massachusetts Institute of Technology

Download references

Author information



Corresponding author

Correspondence to Xiaodan Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Von Neumann stability analysis for stabilized PD

Appendix A: Von Neumann stability analysis for stabilized PD

Here, the von Neumann stability analysis for stabilized PD is presented to show the effectiveness of the Method I. We conduct the analysis in Sect. 3.1 again, and the Eq. (25) turns to be:

$$\begin{aligned} \begin{aligned} \rho \ddot{u}^n(x)=\,&A\int ^{\delta }_{-\delta }C(\xi )[u^n(x+\xi )-u^n(x)] \\&+D(\xi ) [\frac{u^{n+1}(x+\xi )-u^{n-1}(x+\xi )}{2\Delta t}\\&-\frac{u^{n+1}(x)-u^{n-1}(x)}{2\Delta t}]\text {d}\xi \end{aligned} \end{aligned}$$

where \(\ddot{u}^n(x)=[u^{n+1}(x)-2u^n(x)+u^{n-1}(x)]/{\Delta t}^2\), \(C(\xi )=c/\left\| {\xi }\right\| \) and \(D(\xi )=b \alpha _{\text{ p }}/\left\| {\xi }\right\| \) in 1-D. Similarily, let

$$\begin{aligned} u^n(x)={\lambda }^n \exp (\kappa x\sqrt{-1}) \end{aligned}$$

where \(\kappa \) is a positive real number and \(\lambda \) is a complex number. Then Eq. (73) can be written as:

$$\begin{aligned} \begin{aligned} \frac{\rho }{{\Delta t}^2}(\lambda -2+\lambda ^{-1})=\,&A\int ^{\delta }_{0}2C(\xi )[\cos (\kappa \xi )-1]\\&+\frac{D(\xi )}{\Delta t}\lambda [\cos (\kappa \xi )-1]\\&-\frac{D(\xi )}{\Delta t}\lambda ^{-1} [\cos (\kappa \xi )-1]\text {d}\xi \end{aligned} \end{aligned}$$

Actually, \(D(\xi )\) can be regarded as \(\beta C(\xi )\) and with the definition in Eq. (28), we obtain

$$\begin{aligned} \begin{aligned}&\left( 1+\frac{\beta }{\Delta t}\frac{H_\kappa \Delta {t}^2}{\rho }\right) \lambda -2\left( 1 - \frac{{H_\kappa \Delta t}^2}{\rho } \right) \\&\quad +\left( 1-\frac{\beta }{\Delta t}\frac{H_\kappa \Delta {t}^2}{\rho }\right) \lambda ^{-1}=0 \end{aligned} \end{aligned}$$

where \(\beta =b \alpha _{\text{ p }}/c\). Finally, \(\lambda \) is given by:

$$\begin{aligned} \lambda =\frac{\left( 1-\frac{H_\kappa \Delta {t}^2}{\rho }\right) \pm \sqrt{(1-\frac{H_\kappa \Delta {t}^2}{\rho })^2-(1-\theta ^2)}}{1+\theta } \end{aligned}$$

and \(\theta =\frac{\beta H_\kappa \Delta t}{\rho } \ge 0\).

Based on Eq. (77), \(| \lambda |\) of Method I is in the following form:

$$\begin{aligned} | \lambda | ^2=\frac{\left( 1-\frac{H_\kappa \Delta {t}^2}{\rho }\right) ^2 + 1-\theta ^2 - \left( 1-\frac{H_\kappa \Delta {t}^2}{\rho }\right) ^2 }{(1+\theta )^2}=\frac{1-\theta }{1+\theta } \end{aligned}$$

Obviously, \(| \lambda |\le 1\) and \(| \lambda |=1\) only when \(\theta =0\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhu, J. Temporally stabilized peridynamics methods for shocks in solids. Comput Mech (2021).

Download citation


  • Shocks
  • Peridynamics
  • Oscillatory instability
  • Bulk viscosity
  • Zero energy mode