Skip to main content

On the performance of domain decomposition methods for modeling heterogenous materials

Abstract

In this manuscript, we review the performance of domain decomposition methods (DDMs), implemented as a black-box module integrated with a finite element solver, for modeling materials with complex microstructures. In particular, we study the accuracy and computational cost associated with using the non-overlapping and overlapping Schwarz methods, together with required adjustments for each method to avoid convergence issues. Compared to conventional applications such as fluid–solid interaction, the DDM simulation of the mechanical behavior of materials with complex heterostructures could be a challenging task due to high stress concentrations along subdomain edges intersecting with multiple material interfaces. For linear elastic problems, this could lead to high local errors along sub-domain boundaries and especially at subdomain vertices, which requires meticulous updating of boundary conditions (nodal forces and displacements) along these edges to alleviate the error. However, for nonlinear (elastoplastic) problems, we show that such microstructural features prohibit the convergence of the non-overlapping Schwarz method. The remedy to such convergence difficulties is to implement the overlapping Schwarz method, with a high overlap percentage between adjacent subdomains to achieve a reasonable computational cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    Article  Google Scholar 

  2. 2.

    Pai S, Kwon J, Liang B et al (2021) Finite element analysis of the impact of bone nanostructure on its piezoelectric response. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-021-01470-4

  3. 3.

    Ahmadian H, Yang M, Soghrati S (2020) Effect of resin-rich zones on the failure response of carbon fiber reinforced polymers. Int J Solids Struct 188–189:74–87

    Article  Google Scholar 

  4. 4.

    Kannan R, Hendry S, Higham NJ, Tisseur F (2014) Detecting the causes of ill-conditioning in structural finite element models. Comput Struct 133:79–89

    Article  Google Scholar 

  5. 5.

    Yang M, Ji M, Taghipour E, Soghrati S (2018) Cross-linked fiberglass packs: microstructure reconstruction and finite element analysis of the micromechanical behavior. Comput Struct 209:182–196

    Article  Google Scholar 

  6. 6.

    Yang M, Garrard J, Abedi R, Soghrati S (2021) Effect of microstructural variations on the failure response of a nano-enhanced polymer: a homogenization-based statistical analysis. Comput Mech 67(1):315–340

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Baniassadi M, Mortazavi B, Hamedani HA, Garmestani H, Ahzi S, Fathi-Torbaghan M, Ruch D, Khaleel M (2012) Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM. Comput Mater Sci 51(1):372–379

    Article  Google Scholar 

  8. 8.

    Rémond Y, Ahzi S, Baniassadi M, Garmestani H (2016) Applied RVE reconstruction and homogenization of heterogeneous materials. Wiley Online Library, Hoboken

    MATH  Book  Google Scholar 

  9. 9.

    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190(40):5427–5464

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Kanouté P, Boso DP, Chaboche JL, Schrefler B (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75

    MATH  Article  Google Scholar 

  11. 11.

    Inglis HM, Geubelle PH, Matouš K (2008) Boundary condition effects on multiscale analysis of damage localization. Philos Mag 88(16):2373–2397

    Article  Google Scholar 

  12. 12.

    Nguyen VP, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Model 3(04):229–270

    MathSciNet  Article  Google Scholar 

  13. 13.

    Bahmani B, Yang M, Nagarajan A, Clarke PL, Soghrati S, Abedi R (2019) Automated homogenization-based fracture analysis: effects of SVE size and boundary condition. Comput Methods Appl Mech Eng 345:701–727

    MATH  Article  Google Scholar 

  14. 14.

    Feyel F (1999) Multiscale \(\text{ FE}^2\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1):344–354

    Article  Google Scholar 

  15. 15.

    Li C, Chou T-W (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66(14):2409–2414

    Article  Google Scholar 

  16. 16.

    Totry E, González C, LLorca J (2008) Prediction of the failure locus of c/peek composites under transverse compression and longitudinal shear through computational micromechanics. Compos Sci Technol 68(15):3128–3136

    Article  Google Scholar 

  17. 17.

    Feyel F (2003) A multilevel finite element method (\(\text{ FE}^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28):3233–3244

    MATH  Article  Google Scholar 

  18. 18.

    Ahmadian H, Yang M, Nagarajan A, Soghrati S (2019) Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers. Comput Mech 63(5):999–1017

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Liang B, Nagarajan A, Ahmadian H, Soghrati S (2019) Analyzing effects of surface roughness, voids, and particle-matrix interfacial bonding on the failure response of a heterogeneous adhesive. Comput Methods Appl Mech Eng 346:410–439

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437(1900):311–327

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Michel J-C, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193(48–51):5477–5502

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813

    Article  Google Scholar 

  23. 23.

    Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Gao J, Shakoor M, Domel G, Merzkirch M, Zhou G, Zeng D, Su X, Liu WK (2020) Predictive multiscale modeling for unidirectional carbon fiber reinforced polymers. Compos Sci Technol 186:107922

    Article  Google Scholar 

  25. 25.

    Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W, Karpeyev D, Kaushik D, Knepley M, May D, Curfman McInnes L, Mills R, Munson T, Rupp K, Sanan P, Smith B, Zampini S, Zhang H, Zhang H (2021) PETSc users manual. Technical report ANL-95/11 - Revision 3.15, Argonne National Laboratory

  26. 26.

    Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Li J, Hon YC (2004) Domain decomposition for radial basis meshless methods. Numer Methods Partial Differ Equ 20(3):450–462

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Fragakis Y, Papadrakakis M (2003) The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput Methods Appl Mech Eng 192(35–36):3799–3830

    MATH  Article  Google Scholar 

  29. 29.

    Cai X (2003) Overlapping Domain Decomposition Methods. In: Langtangen HP, Tveito A (eds) Advanced Topics in Computational Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18237-2_2

  30. 30.

    Chan TF, Mathew TP (1994) Domain decomposition algorithms. Acta Numer 3(1):61–143

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Smith B, Bjorstad P, Gropp W (2004) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. 32.

    Elleithy WM, Al-Gahtani HJ (2000) An overlapping domain decomposition approach for coupling the finite and boundary element methods. Eng Anal Bound Elem 24(5):391–398

    MATH  Article  Google Scholar 

  33. 33.

    Zhou X, Hon YC, Li J (2003) Overlapping domain decomposition method by radial basis functions. Appl Numer Math 44(1–2):241–255

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Elleithy WM, Tanaka M (2003) Interface relaxation algorithms for BEM-BEM coupling and FEM-BEM coupling. Comput Methods Appl Mech Eng 192(26–27):2977–2992

    MATH  Article  Google Scholar 

  35. 35.

    Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  36. 36.

    Le Tallec P (1994) Domain decomposition methods in computational mechanics. Comput Mech Adv 1(2):121–220

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Tallec P, Roeck Y, Vidrascu M (1991) Domain decomposition methods for large linearly elliptic three-dimensional problems. J Comput Appl Math 34(1):93–117

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Farhat C, Mandel J, Roux FX (1994) Optimal convergence properties of the FETI domain decomposition method. Comput Methods Appl Mech Eng 115(3–4):365–385

    MathSciNet  Article  Google Scholar 

  40. 40.

    Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9(3):233–241

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Farhat C, Lesoinne M, Pierson K (2000) A scalable dual-primal domain decomposition method. Numer Linear Algebra Appl 7(7–8):687–714

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method-part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544

    MATH  Article  Google Scholar 

  43. 43.

    Klawonn A, Widlund OB (2006) Dual-primal FETI methods for linear elasticity. Commun Pure Appl Math A J Issued Courant Inst Math Sci 59(11):1523–1572

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Klawonn A, Rheinbach O (2007) Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput Methods Appl Mech Eng 196(8):1400–1414

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Mandel J, Dohrmann CR (2003) Convergence of a balancing domain decomposition by constraints and energy minimization. Numer Linear Algebra Appl 10(7):639–659

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Appl Numer Math 54(2):167–193

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Klawonn A, Lanser M, Rheinbach O (2014) Nonlinear FETI-DP and BDDC methods. SIAM J Sci Comput 36(2):A737–A765

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Klawonn A, Lanser M, Rheinbach O, Uran M (2017) Nonlinear FETI-DP and BDDC methods: a unified framework and parallel results. SIAM J Sci Comput 39(6):C417–C451

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Papadrakakis M, Stavroulakis G, Karatarakis A (2011) A new era in scientific computing: domain decomposition methods in hybrid CPU–GPU architectures. Comput Methods Appl Mech Eng 200(13–16):1490–1508

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Gendre L, Allix O, Gosselet P, Comte F (2009) Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44(2):233–245

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Duval M, Passieux JC, Salaün M, Guinard S (2016) Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch Comput Methods Eng 23(1):17–38

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Gosselet P, Blanchard M, Allix O et al (2018) Non-invasive global–local coupling as a Schwarz domain decomposition method: acceleration and generalization. Adv Model Simul Eng Sci 5:4. https://doi.org/10.1186/s40323-018-0097-4

  53. 53.

    Kim NH (2014) Introduction to nonlinear finite element analysis. Springer, Berlin

    Google Scholar 

  54. 54.

    Kim NH, Choi KK, Chen JS (2000) Shape design sensitivity analysis and optimization of spatially rotating objects. AIAA J 38(9):1742–1753

    Article  Google Scholar 

  55. 55.

    Bleyer J (2018) Numerical Tours of Computational Mechanics with FEniCS. Zenodo. https://doi.org/10.5281/zenodo.1287832

  56. 56.

    Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48(1):101–118

    MATH  Article  Google Scholar 

  57. 57.

    de Boer A, van Zuijlen AH, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Eng 196(8):1515–1525

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Soghrati S, Nagarajan A, Liang B (2017) Conforming to Interface structured adaptive mesh refinement technique for modeling heterogeneous materials. Comput Mech 125:24–40

    Google Scholar 

  59. 59.

    Nagarajan A, Soghrati S (2018) Conforming to interface structured adaptive mesh refinement: 3d algorithm and implementation. Comput Mech 62(5):1213–1238

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Liang B, Nagarajan A, Soghrati S (2019) Scalable parallel implementation of cisamr: a non-iterative mesh generation algorithm. Comput Mech 64(1):173–195

  61. 61.

    Miled K, Sab K, Le Roy R (2011) Effective elastic properties of porous materials: homogenization schemes vs experimental data. Mech Res Commun 38(2):131–135

    MATH  Article  Google Scholar 

  62. 62.

    Küttler U, Wall WA (2008) Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    MATH  Article  Google Scholar 

  63. 63.

    Küttler U, Wall WA (2009) Vector extrapolation for strong coupling fluid–structure interaction solvers. J Appl Mech Trans ASME 76(2):1–7

    Article  Google Scholar 

  64. 64.

    Smith DA, Ford WF, Sidi A (1987) Extrapolation methods for vector sequences. SIAM Rev 29(2):199–233

    MathSciNet  MATH  Article  Google Scholar 

  65. 65.

    Sidi A (1991) Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J Comput Appl Math 36(3):305–337

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Jbilou K, Sadok H (1999) LU implementation of the modified minimal polynomial extrapolation method for solving linear and nonlinear systems. IMA J Numer Anal 19(4):549–561

    MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    Uekermann B, Bungartz HJ, Gatzhammer B, Mehl M (2013) A parallel, black-box coupling algorithm for fluid–structure interaction. In: COUPLED PROBLEMS 2013—Proceedings of the 5th international conference on coupled problems in science and engineering, pp 241–252

  68. 68.

    Lindner F, Mehl M, Scheufele K, Uekermann B (2015) A comparison of various quasi-Newton schemes for partitioned fluid–structure interaction. In: COUPLED PROBLEMS 2015—Proceedings of the 6th international conference on coupled problems in science and engineering, pp 477–488

  69. 69.

    Bogaers AE, Kok S, Reddy BD, Franz T (2014) Quasi-Newton methods for implicit black-box FSI coupling. Comput Methods Appl Mech Eng 279:113–132

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Bungartz HJ, Lindner F, Mehl M, Uekermann B (2015) A plug-and-play coupling approach for parallel multi-field simulations. Comput Mech 55(6):1119–1129

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    Bungartz HJ, Lindner F, Gatzhammer B, Mehl M, Scheufele K, Shukaev A, Uekermann B (2016) preCICE—a fully parallel library for multi-physics surface coupling. Comput Fluids 141:250–258

    MathSciNet  MATH  Article  Google Scholar 

  72. 72.

    Mehl M, Uekermann B, Bijl H, Blom D, Gatzhammer B, Van Zuijlen A (2016) Parallel coupling numerics for partitioned fluid–structure interaction simulations. Comput Math Appl 71(4):869–891

    MathSciNet  MATH  Article  Google Scholar 

  73. 73.

    Spenke T, Hosters N, Behr M (2020) A multi-vector interface quasi-Newton method with linear complexity for partitioned fluid–structure interaction. Comput Methods Appl Mech Eng 361:112810

    MathSciNet  MATH  Article  Google Scholar 

  74. 74.

    Mota A, Tezaur I, Alleman C (2017) The Schwarz alternating method in solid mechanics. Comput Methods Appl Mech Eng 319:19–51

    MathSciNet  MATH  Article  Google Scholar 

  75. 75.

    Yang M, Nagarajan A, Liang B, Soghrati S (2018) New algorithms for virtual reconstruction of heterogeneous microstructures. Comput Methods Appl Mech Eng 338:275–298

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Computational Mathematics program of the Air Force Office of Scientific Research (AFOSR) under award number FA9550-21-1-0245 (program officer: Dr. Fariba Fahroo). The authors also acknowledge the allocation of computing time from the Ohio Supercomputer Center (OSC) and the Ohio State University Simulation Innovation and Modeling Center (SIMCenter).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soheil Soghrati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Soghrati, S. On the performance of domain decomposition methods for modeling heterogenous materials. Comput Mech (2021). https://doi.org/10.1007/s00466-021-02088-0

Download citation

Keywords

  • Domain decomposition method
  • Finite element method
  • Schwarz method
  • Microstructure
  • Plasticity