Skip to main content
Log in

A pruning algorithm preserving modeling capabilities for polycrystalline data

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We are exploring the idea of data pruning via hyperreduction modeling. The main novelty of this paper is a lossy data compression/decompression approach for ploycrystalline data, which is based on a hyperreduction scheme that preserves data driven modeling capabilities after compression. We assume to know a mechanical model whose equations are satisfied by the data. It is shown that the proposed reconstruction of the data performs an oblique projection of selected original data. This is achieved by the solution of reduced mechanical equations. High resolution crystal plasticity finite element simulations demand computational and storage resources that are unusual, especially in cases where hundreds of grains are interacting under cyclic loading. The development of image-based modeling via computed tomography highlights the problem of long-term storage of simulation data by using data pruning. The present paper focuses on modeling cyclic strain-ratcheting as an example of numerical modeling that the proposed algorithm preserves. The size of the remaining sampled data can be user-defined, depending on the needs concerning storage space. The relevance of the pruned data is tested afterwards for statistics on the predicted strain, as if full finite element data were available. The proposed method is compared to the Gappy POD method, when no additional modeling step is expected after data pruning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alharbi HF, Kalidindi SR (2015) Crystal plasticity finite element simulations using a database of discrete Fourier transforms. Int J Plast 66:71–84. https://doi.org/10.1016/j.ijplas.2014.04.006

    Article  Google Scholar 

  2. Bacry E, Gaiffas S, Leroy F, Morel M, Nguyen DP, Sebiat Y, Sun D (2020) Scalpel3: a scalable open-source library for healthcare claims databases. Int J Med Inform 141:104203. 10.1016/j.ijmedinf.2020.104203

    Article  Google Scholar 

  3. Barrault M, Maday Y, Nguyen N, Patera A (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math Acad Sci Paris Ser I 339:667–672

  4. Bashtannyk D, Hyndman R (2001) Bandwidth selection for kernel conditional density estimation. Comput Stat Data Anal 36:279–298

    Article  MathSciNet  Google Scholar 

  5. Besson J, Cailletaud G, Chaboche J, Forest S (2009) Non-linear mechanics of materials, vol 167. Springer, Berlin

    MATH  Google Scholar 

  6. Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Comput Methods Appl Mech Eng 340:630–656. https://doi.org/10.1016/j.cma.2018.06.004

    Article  MathSciNet  MATH  Google Scholar 

  7. Boucard PA, Ladevèze P, Poss M, Rougée P (1997) A nonincremental approach for large displacement problems. Comput Struct 64(1):499–508. https://doi.org/10.1016/S0045-7949(96)00165-4

    Article  MATH  Google Scholar 

  8. Busso EP, Cailletaud G (2005) On the selection of active slip systems in crystal plasticity. Int J Plast 21(11):2212–2231

    Article  Google Scholar 

  9. Chaturantabut S, Sorensen D (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5):2737–2764

    Article  MathSciNet  Google Scholar 

  10. Chinesta F, Ladeveze P, Ibanez R, Aguado JV, Abisset-Chavanne E, Cueto E (2017) Data-driven computational plasticity. Procedia Eng 207:209–214. https://doi.org/10.1016/j.proeng.2017.10.763

    Article  MATH  Google Scholar 

  11. Cruzado A, Lorca J, Segurado J (2017) Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int J Solids Struct 122–123:148–161. https://doi.org/10.1016/j.ijsolstr.2017.06.014

  12. Everson R, Sirovich L (1995) Karhunen–Loève procedure for gappy data. J Opt Soc Am A 12:1657–1664

    Article  Google Scholar 

  13. Farhat C, Avery P, Chapman T, Cortial J (2014) Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int J Numer Methods Eng 98(9):625–662

    Article  MathSciNet  Google Scholar 

  14. Farooq H, Cailletaud G, Forest S, Ryckelynck D (2019) Crystal plasticity modeling of the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading: Global and local analyses. Int J Plast 126:102619. https://doi.org/10.1016/j.ijplas.2019.10.007

    Article  Google Scholar 

  15. Fauque J, Ramière I, Ryckelynck D (2018) Hybrid hyper-reduced modeling for contact mechanics problems. Int J Numer Methods Eng 115(1):309–317. https://doi.org/10.1002/nme.5798

    Article  MathSciNet  Google Scholar 

  16. Forest S, Rubin M (2016) A rate-independent crystal plasticity model with a smooth elastic–plastic transition and no slip indeterminacy. Eur J Mech A Solids 55:278–288

    Article  MathSciNet  Google Scholar 

  17. Franciosi P, Berbenni S (2007) Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis within a regularized Schmid law. J Mech Phys Solids 55(11):2265–2299. https://doi.org/10.1016/j.jmps.2007.04.012

    Article  MathSciNet  MATH  Google Scholar 

  18. Frankel A, Jones R, Alleman C, Templeton J (2019) Predicting the mechanical response of oligocrystals with deep learning. Comput Mater Sci 169:109099. https://doi.org/10.1016/j.commatsci.2019.109099

    Article  Google Scholar 

  19. Fritzen F, Hassani M (2018) Space-time model order reduction for nonlinear viscoelastic systems subjected to long-term loading. Meccanica 53(6):1333–1355

    Article  MathSciNet  Google Scholar 

  20. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154. https://doi.org/10.1016/j.cma.2013.03.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao H, Wang JX, Zahr MJ (2020) Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning. Physica D 412:132614. https://doi.org/10.1016/j.physd.2020.132614

    Article  MathSciNet  Google Scholar 

  22. Gérard C, Cailletaud G, Bacroix B (2013) Modeling of latent hardening produced by complex loading paths in FCC alloys. Int J Plast 42:194–212

    Article  Google Scholar 

  23. Gu T, Medy JR, Klosek V, Castelnau O, Forest S, Hervé-Luanco E, Lecouturier-Dupouy F, Proudhon H, Renault PO, Thilly L, Villechaise P (2019) Multiscale modeling of the elasto-plastic behavior of architectured and nanostructured Cu-Nb composite wires and comparison with neutron diffraction experiments. Int J Plast

  24. Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189

    Article  MathSciNet  Google Scholar 

  25. Hilth W, Ryckelynck D, Menet C (2019) Data pruning of tomographic data for the calibration of strain localization models. Math Comput Appl 24(1)

  26. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679

    Article  Google Scholar 

  27. Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Finnicae Ser A 1:34

    MathSciNet  MATH  Google Scholar 

  28. Kotha S, Ozturk D, Ghosh S (2019) Parametrically homogenized constitutive models (phcms) from micromechanical crystal plasticity fe simulations, part i: sensitivity analysis and parameter identification for titanium alloys. Int J Plast 120:296–319

    Article  Google Scholar 

  29. Lee K, Carlberg KT (2020) Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J Comput Phys 404:108973. https://doi.org/10.1016/j.jcp.2019.108973

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341. https://doi.org/10.1016/j.cma.2016.04.004

    Article  MathSciNet  MATH  Google Scholar 

  31. Loève M (1963) Probability theory. The university series in higher mathematics, NJ, 3rd edn. Van Nosterand, Princeton

    Google Scholar 

  32. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Stat Forecast 1

  33. Masui K, Amiri M, Connor L, Deng M, Fandino M, Höfer C, Halpern M, Hanna D, Hincks A, Hinshaw G, Parra J, Newburgh L, Shaw J, Vanderlinde K (2015) A compression scheme for radio data in high performance computing. Astron Comput 12:181–190. https://doi.org/10.1016/j.ascom.2015.07.002

    Article  Google Scholar 

  34. Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    Article  MathSciNet  Google Scholar 

  35. Méric L, Poubanne P, Cailletaud G (1991) Single crystal modeling for structural calculations: part 1—model presentation. J Eng Mater Technol 113

  36. Michel J, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955

    Article  MathSciNet  Google Scholar 

  37. Olivier C, Ryckelynck D, Cortial J (2019) Multiple tensor train approximation of parametric constitutive equations in elasto-viscoplasticity. Math Comput Appl. https://doi.org/10.3390/mca24010017

    Article  MathSciNet  Google Scholar 

  38. Pelle JP, Ryckelynck D (2000) An efficient adaptive strategy to master the global quality of viscoplastic analysis. Comput Struct 78(1):169–183

    Article  Google Scholar 

  39. Prithivirajan V, Sangid MD (2018) The role of defects and critical pore size analysis in the fatigue response of additively manufactured in718 via crystal plasticity. Mater Des 150:139–153

    Article  Google Scholar 

  40. Rovinelli A, Sangid MD, Proudhon H, Guilhem Y, Lebensohn RA, Ludwig W (2018) Predicting the 3d fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: in-situ experiments and crystal plasticity simulations. J Mech Phys Solids 115:208–229. https://doi.org/10.1016/j.jmps.2018.03.007

    Article  MathSciNet  Google Scholar 

  41. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202(1):346–366

    Article  MathSciNet  Google Scholar 

  42. Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89

    Article  MathSciNet  Google Scholar 

  43. Ryckelynck D, Lampoh K, Quilici S (2016) Hyper-reduced predictions for lifetime assessment of elasto-plastic structures. Meccanica 51(2):309–317. https://doi.org/10.1007/s11012-015-0244-7

    Article  MathSciNet  Google Scholar 

  44. Ryckelynck D, Missoum-Benziane D, Musienko A, Cailletaud G (2010) Toward “green” mechanical simulations in materials science: hyper-reduction of a polycrystal plasticity model. Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics 19(4):365–388

  45. Rycroft C (2009) Voro++: a three-dimensional voronoi cell library in C++. Chaos 19. https://doi.org/10.1063/1.3215722

  46. Sedighiani K, Diehl M, Traka K, Roters F, Sietsma J, Raabe D (2020) An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int J Plast 134:102779. https://doi.org/10.1016/j.ijplas.2020.102779

    Article  Google Scholar 

  47. Shantsev DV, Jaysaval P, de la Kethulle de Ryhove S, Amestoy PR, Buttari A, L’Excellent JY, Mary T (2017) Large-scale 3-D EM modelling with a block low-rank multifrontal direct solver. Geophys J Int 209(3):1558–1571

  48. Sirovich L (1987) Turbulence and the dynamics of coherent structures, parts I, II and III. Q Appl Math XLV(3):561–590

  49. Sun F, Meade ED, ODowd NP (2018) Microscale modelling of the deformation of a martensitic steel using the voronoi tessellation method. J Mech Phys Solids 113:35–55

  50. Verwaerde R, Guidault PA, Boucard PA (2021) A non-linear finite element connector model with friction and plasticity for the simulation of bolted assemblies. Finite Elem Anal Des 195:103586. https://doi.org/10.1016/j.finel.2021.103586

    Article  MathSciNet  Google Scholar 

  51. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat İ, Feng Y, Moore EW, Vand erPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Contributors S (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272 . https://doi.org/10.1038/s41592-019-0686-2

  52. Wang P, Dong XH, Fu LJ (2010) Simulation of bulk metal forming processes using one-step finite element approach based on deformation theory of plasticity. Trans Nonferrous Met Soc China 20(2):276–282 . https://doi.org/10.1016/S1003-6326(09)60134-5

  53. Yagawa G, Shioya R (1993) Parallel finite elements on a massively parallel computer with domain decomposition. Comput Syst Eng 4(4):495–503

    Article  Google Scholar 

  54. Z-set package: non-linear material & structure analysis suite (2013). www.zset-software.com

  55. Zhang H, Diehl M, Roters F, Raabe D (2016) A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. Int J Plast 80:111–138

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Safran via the sponsorship chair Cristal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ryckelynck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, H., Ryckelynck, D., Forest, S. et al. A pruning algorithm preserving modeling capabilities for polycrystalline data . Comput Mech 68, 1407–1419 (2021). https://doi.org/10.1007/s00466-021-02075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02075-5

Keywords

Navigation