Skip to main content

Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation

Abstract

The numerical assessment of the crack development in structures subjected to plastic deformations using a phase-field approach is investigated in the present study. By relying on distinctive features of phase-field diffusive crack concept, a recently-developed iterative staggered algorithm is employed for implementation of the overall system of equations, in which one can achieve results that are insensitive to the chosen value of the load increment. This procedure offers advantage in convergence at rather less computational time than the popular standard staggered algorithms, while it maintains the desired solution accuracy. By emphasizing the application of this numerical treatment in phase-field concept in an elastoplastic material framework, the choice of utilizing a plastic work threshold value and its influence on inelastic and post-critical material behavior is elaborated. The numerical performance of the specified phase-field model is evaluated using existing fracture benchmarks in literature, as well as, from a performed experimental tensile test sample.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826. https://doi.org/10.1016/S0022-5096(99)00028-9

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778. https://doi.org/10.1016/j.cma.2010.04.011

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311. https://doi.org/10.1002/nme.2861

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368. https://doi.org/10.1016/j.jmps.2008.10.012

    Article  MATH  Google Scholar 

  6. 6.

    Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95. https://doi.org/10.1016/j.cma.2012.01.008

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166. https://doi.org/10.1016/j.cma.2016.09.005

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Miehe C, Teichtmeister S, Aldakheel F (2016) Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos Trans A Math Phys Eng Sci 374:20150170. https://doi.org/10.1098/rsta.2015.0170

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040. https://doi.org/10.1007/s00466-015-1151-4

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Alessi R, Marigo J-J, Maurini C, Vidoli S (2017) Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2017.05.047

    Article  Google Scholar 

  11. 11.

    Fang J, Wu C, Li J, Liu Q, Wu C, Sun G et al (2019) International Journal of Mechanical Sciences Phase field fracture in elasto-plastic solids : variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening. Int J Mech Sci 156:382–396. https://doi.org/10.1016/j.ijmecsci.2019.03.012

    Article  Google Scholar 

  12. 12.

    Azinpour E, de Sa JC, dos Santos AD (2020) Micromechanically-motivated phase field approach to ductile fracture. https://doi.org/10.1177/1056789520948933

  13. 13.

    Yin B, Kaliske M (2020) A ductile phase-field model based on degrading the fracture toughness: theory and implementation at small strain. Comput Methods Appl Mech Eng 366:113068. https://doi.org/10.1016/j.cma.2020.113068

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62. https://doi.org/10.1002/nme.4553

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    May S, Vignollet J, De Borst R (2015) A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations. Eur J Mech A/Solids 52:72–84. https://doi.org/10.1016/j.euromechsol.2015.02.002

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50. https://doi.org/10.1016/j.cma.2016.09.028

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Duran JAR, da Costa DJR, Ribeiro Junior LCDA (2018) Numerical stress-life curves for the aisi 4340 steel using two sets of materials properties and different bi-axial stress ratios. Lat Am J Solids Struct. https://doi.org/10.1590/1679-78254308

  18. 18.

    Kuhn C, Noll T, Müller R (2016) On phase field modeling of ductile fracture. GAMM-Mitteilungen 39:35–54. https://doi.org/10.1002/gamm.201610003

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Alessi R (2018) A brief review on computational modeling of rupture in soft biological tissues. Adv Comput Plast. https://doi.org/10.1007/978-3-319-60885-3

    Article  Google Scholar 

  20. 20.

    Msekh MA, Sargado JM, Jamshidian M, Areias PM, Rabczuk T (2015) Abaqus implementation of phase-field model for brittle fracture. Comput Mater Sci 96:472–484. https://doi.org/10.1016/j.commatsci.2014.05.071

    Article  Google Scholar 

  21. 21.

    Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng 312:276–303. https://doi.org/10.1016/j.cma.2015.12.017

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Wick T (2017) An error-oriented newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation. SIAM J Sci Comput 39:B589-617

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wick T (2017) Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation. Comput Methods Appl Mech Eng 325:577–611. https://doi.org/10.1016/j.cma.2017.07.026

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Wu JY, Huang Y, Nguyen VP (2020) On the BFGS monolithic algorithm for the unified phase field damage theory. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.112704

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99. https://doi.org/10.1016/j.jmps.2017.03.015

    MathSciNet  Article  Google Scholar 

  26. 26.

    Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2019.102446

    Article  Google Scholar 

  27. 27.

    Kopaničáková A, Krause R (2020) A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.112720

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Zhang P, Hu X, Wang X, Yao W (2018) An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Eng Fract Mech 204:268–287. https://doi.org/10.1016/j.engfracmech.2018.10.006

    Article  Google Scholar 

  29. 29.

    Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw 122:31–49. https://doi.org/10.1016/j.advengsoft.2018.03.012

    Article  Google Scholar 

  30. 30.

    Seleš K, Lesičar T, Tonković Z, Sorić J (2019) A residual control staggered solution scheme for the phase-field modeling of brittle fracture. Eng Fract Mech 205:370–386. https://doi.org/10.1016/j.engfracmech.2018.09.027

    Article  Google Scholar 

  31. 31.

    Wu JY, Huang Y (2020) Comprehensive implementations of phase-field damage models in Abaqus. Theor Appl Fract Mech 106:102440. https://doi.org/10.1016/j.tafmec.2019.102440

    Article  Google Scholar 

  32. 32.

    Fang J, Wu C, Rabczuk T, Wu C, Ma C, Sun G et al (2019) Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2019.102252

    Article  Google Scholar 

  33. 33.

    Huang C, Gao X (2019) Development of a phase fi eld method for modeling brittle and ductile fracture. Comput Mater Sci 169:109089. https://doi.org/10.1016/j.commatsci.2019.109089

    Article  Google Scholar 

  34. 34.

    Molnár G, Gravouil A, Seghir R, Réthoré J (2020) An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.113004

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Badnava H, Etemadi E, Msekh M (2017) A phase field model for rate-dependent ductile fracture. Metals (Basel) 7:180. https://doi.org/10.3390/met7050180

    Article  Google Scholar 

  36. 36.

    Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57:149–167. https://doi.org/10.1007/s00466-015-1225-3

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43:999–1036. https://doi.org/10.1002/cpa.3160430805

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Pham K, Amor H, Marigo J-J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20:618–652. https://doi.org/10.1177/1056789510386852

    Article  Google Scholar 

  39. 39.

    Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys Solids 57:1209–1229. https://doi.org/10.1016/j.jmps.2009.04.011

    Article  MATH  Google Scholar 

  40. 40.

    Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623. https://doi.org/10.1016/j.compstruc.2005.10.007

    Article  Google Scholar 

  41. 41.

    Aldakheel F, Wriggers P, Miehe C (2017) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech. https://doi.org/10.1007/s00466-017-1530-0

    Article  MATH  Google Scholar 

  42. 42.

    Seupel A, Hütter G, Kuna M (2018) An efficient FE-implementation of implicit gradient-enhanced damage models to simulate ductile failure. Eng Fract Mech 199:41–60. https://doi.org/10.1016/j.engfracmech.2018.01.022

    Article  Google Scholar 

  43. 43.

    Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Methods Eng 66:661–688. https://doi.org/10.1002/nme.1572

    Article  MATH  Google Scholar 

  44. 44.

    Azinpour E, Darabi R, Cesar de Sa J, Santos A, Hodek J, Dzugan J (2020) Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elem Anal Des 177:103417. https://doi.org/10.1016/j.finel.2020.103417

    Article  Google Scholar 

  45. 45.

    Cruz DJ, Shamchi SP, Santos AD, Amaral RL, Tavares PJ, Moreira PMGP (2020) Development of a mini-tensile approach for sheet metal testing using digital image correlation. Procedia Struct Integr 25:316–323. https://doi.org/10.1016/j.prostr.2020.04.036

    Article  Google Scholar 

  46. 46.

    Ricardo R, Amaral L (2020) Development of accurate numerical methodologies applied to the stamping of advanced high strength steels and experimental validation

Download references

Acknowledgements

Authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-032419 – msCORE -Multiscale methodology with model order reduction for advanced materials and processes, cofinanced by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER) and by Fundação para a Ciência e Tecnologia through its component of the state budget.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Azinpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azinpour, E., Cruz, D.J., de Sa, J.M.A.C. et al. Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation. Comput Mech 68, 255–269 (2021). https://doi.org/10.1007/s00466-021-02029-x

Download citation

Keywords

  • Phase-field diffusive crack
  • Iterative staggered algorithm
  • Elastoplastic solids
  • Plastic work threshold