Skip to main content
Log in

A combined XFEM phase-field computational model for crack growth without remeshing

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an adaptive strategy for phase-field simulations with transition to fracture. The phase-field equations are solved only in small subdomains around crack tips to determine propagation, while an extended finite element method (XFEM) discretization is used in the rest of the domain to represent sharp cracks, enabling to use a coarser discretization and therefore reducing the computational cost. Crack-tip subdomains move as cracks propagate in a fully automatic process. The same mesh is used during all the simulation, with an h-refined approximation in the elements in the crack-tip subdomains. Continuity of the displacement between the refined subdomains and the XFEM region is imposed in weak form via Nitsche’s method. The robustness of the strategy is shown for some numerical examples in 2D and 3D, including branching and coalescence tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  Google Scholar 

  2. Belytschko T, Black T (1999) Elastic crack growth in finite element with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  Google Scholar 

  3. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  4. Chang KJ (1981) On the maximum strain criterion—a new approach to the angled crack problem. Eng Fract Mech 14(1):107–124

    Article  Google Scholar 

  5. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525

    Article  Google Scholar 

  6. Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    Article  MathSciNet  Google Scholar 

  7. Geelen R, Liu Y, Dolbow J, Rodríguez-Ferran A (2018) An optimization-based phase-field method for continuous-discontinuous crack propagation. Int J Numer Methods Eng 116(1):1–20

    Article  MathSciNet  Google Scholar 

  8. Geelen R, Plews J, Tupek M, Dolbow J (2020) An extended/generalized phase-field finite element method for crack growth with global-local enrichment. Int J Numer Methods Eng 121(11):2534–2557

    Article  MathSciNet  Google Scholar 

  9. Giner E, Tur M, Tarancón J, Fuenmayor F (2009) Crack face contact in X-FEM using a segment-to-segment approach. Int J Numer Methods Eng 82(11):1424–1449

    Article  MathSciNet  Google Scholar 

  10. Giovanardi B, Scotti A, Formaggia L (2017) A hybrid XFEM-Phase field (Xfield) method for crack propagation in brittle elastic materials. Comput Methods Appl Mech Eng 320:396–420

    Article  MathSciNet  Google Scholar 

  11. Griebel M, Schweitzer MA (2003) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt Stefan, Karcher Hermann (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

    Chapter  Google Scholar 

  12. Gürkan C, Sala-Lardies E, Kronbichler M, Fernández-Méndez S (2016) eXtended hybridizable discontinuous Galerkin (X-HDG) for void problems. J Sci Comput 66:1313–1333

    Article  MathSciNet  Google Scholar 

  13. Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28(2):183–206

    Article  MathSciNet  Google Scholar 

  14. Kim TY, Dolbow J, Laursen T (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39:223–235

    Article  Google Scholar 

  15. Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381

    Article  Google Scholar 

  16. Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103(6):445–468

    Article  MathSciNet  Google Scholar 

  17. Miehe C, Hofacker M, Welschinger F (2010) A phase-field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778

    Article  MathSciNet  Google Scholar 

  18. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  Google Scholar 

  19. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  20. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  Google Scholar 

  21. Muixí A, Fernández-Méndez S, Rodríguez-Ferran A (2018) A hybridizable discontinuous Galerkin phase-field model for brittle fracture. Reports@SCM 4(1):31–42

    MathSciNet  Google Scholar 

  22. Muixí A, Fernández-Méndez S, Rodríguez-Ferran A (2020) Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method. Comput Mech 66:69–85

    Article  MathSciNet  Google Scholar 

  23. Muixí A, Rodríguez-Ferran A, Fernández-Méndez S (2020) A hybridizable Discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement. Int J Numer Methods Eng 121(6):1147–1169

    Article  MathSciNet  Google Scholar 

  24. Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De Lorenzis L, Rank E (2019) Phase-field modeling of brittle fracture with multi-level \(hp\)-FEM and the finite cell method. Comput Mech 63:1283–1300

    Article  MathSciNet  Google Scholar 

  25. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282

    Article  Google Scholar 

  26. Patil RU, Mishra BK, Singh IV (2018) A local moving extended phase field method (LMXPFM) for failure analysis of brittle fracture. Comput Methods Appl Mech Eng 342:674–709

    Article  Google Scholar 

  27. Sih GC (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Article  Google Scholar 

  28. Sukumar N, Dolbow J, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196:189–206

    Article  Google Scholar 

  29. Sun CT, Jin ZH (2012) Fracture mechanics, 1st edn. Academic Press, Cambridge

    Google Scholar 

  30. Tamayo-Mas E, Rodríguez-Ferran A (2015) A medial-axis-based model for propagating cracks in a regularised bulk. Int J Numer Methods Eng 101(7):489–520

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca training grant FI-DGR 2017, the DAFOH2 project (Ministerio de Ciencia e Innovación, MTM2013-46313-R) and the Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya (2017-SGR-1278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Fernández-Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muixí, A., Marco, O., Rodríguez-Ferran, A. et al. A combined XFEM phase-field computational model for crack growth without remeshing. Comput Mech 67, 231–249 (2021). https://doi.org/10.1007/s00466-020-01929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01929-8

Keywords

Navigation