Skip to main content
Log in

Finite element formulation for implicit magnetostrictive constitutive relations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Magnetostrictive materials that couple mechanical and magnetic domains have been widely explored for use in sensors and actuators. These materials often exhibit a nonlinear material response under applied magnetic fields, which limits the use of linear constitutive models. Furthermore, the nonlinear constitutive relations tend to be implicit in nature. Hence, a finite element scheme that can handle the implicit relationship between the mechanical (stresses and strains) and magnetic (magnetic flux density and magnetic field) quantities is proposed in order to arrive at solutions to boundary value problems. In the proposed scheme, while the physical requirements of equilibrium and strain–displacement relation are satisfied point-wise, the constitutive relations hold in a weak integral sense. A fully coupled magnetostrictive plane stress rectangular element is developed based on the proposed scheme and its efficacy in arriving at solutions to coupled field boundary value problems is illustrated by subjecting the element to standard loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Buschow KHJ, de Boer FR (2003) Magnetostrictive materials. Springer, Boston

    Book  Google Scholar 

  2. Atulasimha J, Flatau AB (2011) A review of magnetostrictive iron-gallium alloys. Smart Mater Struct 20(4):043001

    Article  Google Scholar 

  3. Deng Z, Dapino MJ (2017) Review of magnetostrictive vibration energy harvesters. Smart Mater Struct 26(10):103001

    Article  Google Scholar 

  4. Moffett MB, Clark AE, Wun-Fogle M, Linberg J, Teter JP, McLaughlin EA (1991) Characterization of Terfenol-D for magnetostrictive transducers. J Acoust Soc Am 89(3):1448–1455

    Article  Google Scholar 

  5. Carman GP, Mitrovic M (1995) Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. J Intell Mater Syst Struct 6(5):673–683

    Article  Google Scholar 

  6. Wan Y, Fang D, Hwang KC (2003) Non-linear constitutive relations for magnetostrictive materials. Int J Non-Linear Mech 38(7):1053–1065

    Article  Google Scholar 

  7. Duenas T, Hsu L, Cakman G (1996) Magnetostrictive composite material systems analytical/experimental. MRS Online Proc Library Archive 459

  8. Zheng X et al (2005) A nonlinear constitutive model for magnetostrictive materials. Acta Mech Sin 21(3):278–285

    Article  Google Scholar 

  9. Zheng XJ, Liu XE (2005) A nonlinear constitutive model for Terfenol-D rods. J Appl Phys 97(5):053901

    Article  Google Scholar 

  10. Bhatti MA (2005) Fundamental finite element analysis and applications: with Mathematica and Matlab computations. Wiley, Hoboken

    MATH  Google Scholar 

  11. Reddy BD (2016) In: Schröder J, Wriggers P (eds) Functional analysis, boundary value problems and finite elements. Springer, Cham, pp 1–15

  12. Bhatti MA (2006) Advanced topics in finite element analysis of structures: with Mathematica and MATLAB computations. Wiley, Hoboken

    MATH  Google Scholar 

  13. Wang J, Steinmann P (2013) Finite element simulation of the magneto-mechanical response of a magnetic shape memory alloy sample. Philos Mag 93(20):2630–2653

    Article  Google Scholar 

  14. Rajagopal KR (2003) On implicit constitutive theories. Appl Math 48(4):279–319

    Article  MathSciNet  Google Scholar 

  15. Rajagopal K, Srinivasa A (2009) On a class of non-dissipative materials that are not hyperelastic. Proc R Soc A Math Phys Eng Sci 465(2102):493–500

    MathSciNet  MATH  Google Scholar 

  16. Gokulnath C, Saravanan U, Rajagopal K (2017) Representations for implicit constitutive relations describing non-dissipative response of isotropic materials. Z Angew Math Phys 68(6):129

    Article  MathSciNet  Google Scholar 

  17. Shankar L, Rajthilak S, Saravanan U (2016) Numerical technique for solving truss and plane problems for a new class of elastic bodies. Acta Mech 227(11):3147–3176

    Article  MathSciNet  Google Scholar 

  18. Besbes M, Ren Z, Razek A (1996) Finite element analysis of magneto-mechanical coupled phenomena in magnetostrictive materials. IEEE Trans Magn 32(3):1058–1061

    Article  Google Scholar 

  19. Kannan K, Dasgupta A (1997) A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structures. Smart Mater Struct 6(3):341

    Article  Google Scholar 

  20. Besbes M, Ren Z, Razek A (2001) A generalized finite element model of magnetostriction phenomena. IEEE Trans Magn 37(5):3324–3328

    Article  Google Scholar 

  21. Pérez-Aparicio JL, Sosa H (2004) A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials. Smart Mater Struct 13(3):493

    Article  Google Scholar 

  22. Gao Y, Zhang J (2011) The effective properties of three-dimensional giant magnetostrictive composites. J Appl Phys 110(11):114121

    Article  Google Scholar 

  23. Zhou HM, Ou XW, Xiao Y, Qu SX, Wu HP (2013) An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings. Smart Mater Struct 22(3):035018

    Article  Google Scholar 

  24. Zhang S, Yao H, Gao Y (2017) A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates. J Magn Magn Mater 428:437–447

    Article  Google Scholar 

  25. Do TA, Talleb H, Gensbittel A, Ren Z (2019) 3-D finite element analysis of magnetoelectric composites accounting for material nonlinearity and eddy currents. IEEE Trans Magn 55(10):1–8

    Article  Google Scholar 

  26. Chakrabarti S, Dapino MJ (2011) Nonlinear finite element model for 3D Galfenol systems. Smart Mater Struct 20(10):105034

    Article  Google Scholar 

  27. Deng Z, Dapino MJ (2015) Characterization and finite element modeling of Galfenol minor flux density loops. J Intell Mater Syst Struct 26(1):47–55

    Article  Google Scholar 

  28. Chakrabarti S, Dapino MJ (2012) Coupled axisymmetric finite element model of a hydraulically amplified magnetostrictive actuator for active powertrain mounts. Finite Elem Anal Des 60:25–34

    Article  Google Scholar 

  29. Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  30. Armstrong WD (1997) Magnetization and magnetostriction processes in Tb(0.27–0.30)Dy(0.73–0.70)Fe(1.9–2.0). J Appl Phys 81(5):2321–2326

    Article  Google Scholar 

  31. Evans PG, Dapino MJ (2010) Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol. J Appl Phys 107(6):063906

    Article  Google Scholar 

  32. Timošenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arockiarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The MATLAB\(^{\textregistered }\) codes implementing the proposed algorithm are provided as electronic supplementary material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Saravanan thanks the financial support received from Science and Engineering Research Board under Grant MTR/2017/000350.

Appendix

Appendix

1.1 Appendix A: Shape function matrix for magnetic scalar potential \(\psi \)

The Lagrange shape functions assumed for the scalar potential, displacements and geometry are

$$\begin{aligned} N_1&= \frac{(1-s)(1-t)}{4}&N_2&= \frac{(1+s)(1-t)}{4} \end{aligned}$$
(34a)
$$\begin{aligned} N_3&= \frac{(1+s)(1+t)}{4}&N_4&= \frac{(1-s)(1+t)}{4} \end{aligned}$$
(34b)

The shape function matrix for the scalar potential and the [B] matrix for the magnetic field are thus given by

$$\begin{aligned} {[}N^{\psi }]&= \begin{bmatrix} N_1&N_2&N_3&N_4 \end{bmatrix} \end{aligned}$$
(35a)
$$\begin{aligned} {[}B^{\psi }]&= -[J]^{-T}\begin{bmatrix} N_{1,s} &{} N_{2,s} &{} N_{3,s} &{} N_{4,s} \\ N_{1,t} &{} N_{2,t} &{} N_{3,t} &{} N_{4,t} \end{bmatrix} \end{aligned}$$
(35b)

1.2 Appendix B: Shape function matrix for magnetic vector potential A

The shape functions for a non-conformal element are given as

$$\begin{aligned} N_1&= -\frac{(s - 1)(t - 1)(s^2 + s + t^2 + t - 2)}{8} \end{aligned}$$
(36a)
$$\begin{aligned} N_2&= -\frac{(s - 1)^2(s + 1)(t - 1)}{8} \end{aligned}$$
(36b)
$$\begin{aligned} N_3&= -\frac{(s - 1)(t - 1)^2(t + 1)}{8} \end{aligned}$$
(36c)
$$\begin{aligned} N_4&= \frac{(s + 1)(t - 1)(s^2 - s + t^2 + t - 2)}{8} \end{aligned}$$
(36d)
$$\begin{aligned} N_5&= -\frac{(s - 1)(s + 1)^2(t - 1)}{8} \end{aligned}$$
(36e)
$$\begin{aligned} N_6&= \frac{(s + 1)(t - 1)^2(t + 1)}{8} \end{aligned}$$
(36f)
$$\begin{aligned} N_7&= \frac{(s + 1)(t + 1)(- s^2 + s - t^2 + t + 2)}{8} \end{aligned}$$
(36g)
$$\begin{aligned} N_8&= \frac{(s - 1)(s + 1)^2(t + 1)}{8} \end{aligned}$$
(36h)
$$\begin{aligned} N_9&= \frac{(s + 1)(t - 1)(t + 1)^2}{8} \end{aligned}$$
(36i)
$$\begin{aligned} N_{10}&= \frac{(s - 1)(t + 1)(s^2 + s + t^2 - t - 2)}{8} \end{aligned}$$
(36j)
$$\begin{aligned} N_{11}&= \frac{(s - 1)^2(s + 1)(t + 1)}{8} \end{aligned}$$
(36k)
$$\begin{aligned} N_{12}&= -\frac{(s - 1)(t - 1)(t + 1)^2}{8} \end{aligned}$$
(36l)

Thus, the [B] matrix for the magnetic flux is thus given by

$$\begin{aligned} {[}B^A] = \begin{bmatrix} \frac{\partial s}{\partial y} &{} \frac{\partial t}{\partial y} \\ -\frac{\partial s}{\partial x} &{} \frac{\partial t}{\partial x} \end{bmatrix}\begin{bmatrix} N_{1,s} &{} N_{2,s} &{} N_{3,s} &{} \dots &{} N_{12,s} \\ N_{1,t} &{} N_{2,t} &{} N_{3,t} &{} \dots &{} N_{12,t} \end{bmatrix} \begin{bmatrix} \mathbf {T_1} &{} \mathbf {0} &{} \mathbf {0} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {T_1} &{} \mathbf {0} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} \mathbf {T_1} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} \mathbf {0} &{} \mathbf {T_1} \end{bmatrix} \end{aligned}$$
(37)

where \(\mathbf {T_1}=\begin{bmatrix} 1 &{} 0 &{} 0 \\ 0 &{} J_{11} &{} J_{21} \\ 0 &{} J_{12} &{} J_{22} \end{bmatrix}\) and \(\mathbf {0}\) is a null matrix of size 3 \(\times \) 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudersan, S., Saravanan, U. & Arockiarajan, A. Finite element formulation for implicit magnetostrictive constitutive relations. Comput Mech 66, 1497–1514 (2020). https://doi.org/10.1007/s00466-020-01914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01914-1

Keywords

Navigation