Skip to main content

Advertisement

Log in

A highly parallel implicit domain decomposition method for the simulation of the left ventricle on unstructured meshes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We consider the numerical simulation of the left ventricle of the human heart by a hyperelastic fiber reinforced transversely isotropic model. This is an important model problem for the understanding of the mechanical properties of the human heart but its calculation is very time consuming because the lack of fast, scalable method that is also robust with respect to the model parameters. In this paper, we propose and study a fully implicit overlapping domain decomposition method on unstructured meshes for the discretized system. The algorithm is constructed within the framework of Newton–Krylov methods with an analytically constructed Jacobian. We show numerically that the algorithm is highly parallel and robust with respect to the material parameters, the large deformation, the fiber reinforcement, and the geometry of the patient-specific left ventricle. Numerical experiments show that the algorithm scales well on a supercomputer with more than 8000 processor cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aris R (2012) Vectors, tensors and the basic equations of fluid mechanics. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  2. Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646

    Article  MathSciNet  Google Scholar 

  3. Avazmohammadi R, Hill M, Simon M, Zhang W, Sacks M (2017) A novel constitutive model for passive right ventricular myocardium: evidence for myofiber-collagen fiber mechanical coupling. Biomech Model Mechanobiol 16(2):561–581

    Article  Google Scholar 

  4. Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W, Karpeyev D, Kaushik D, Knepley M, May D, McInnes L, Mills R, Munson T, Rupp K, Sanan P, Smith B, Zampini S, Zhang H, Zhang H (2020) PETSc Users Manual Revision 3.13, 2020

  5. Bayer JD, Blake RC, Plank G, Trayanova NA (2012) A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 40(10):2243–2254

    Article  Google Scholar 

  6. Bozdağ D, Catalyurek U, Gebremedhin AH, Manne F, Boman EG, Özgüner F (2005) A parallel distance-2 graph coloring algorithm for distributed memory computers. International conference on high performance computing and communications. Springer, New York, pp 796–806

    Chapter  Google Scholar 

  7. Cai XC, Sarkis M (1999) A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput 21(2):792–797

    Article  MathSciNet  Google Scholar 

  8. Cai XC, Gropp WD, Keyes DE, Tidriri MD (1994) Newton–Krylov–Schwarz methods in CFD. Numerical methods for the Navier–Stokes equations. Springer, New York, pp 17–30

    Chapter  Google Scholar 

  9. Chen R, Cai XC (2012) Parallel one-shot Lagrange–Newton–Krylov–Schwarz algorithms for shape optimization of steady incompressible flows. SIAM J Sci Comput 34(5):B584–B605

    Article  MathSciNet  Google Scholar 

  10. Chen W, Gao H, Luo X, Hill N (2016) Study of cardiovascular function using a coupled left ventricle and systemic circulation model. J Biomech 49(12):2445–2454

    Article  Google Scholar 

  11. Ciarlet PG (1988) Mathematical elasticity, volume i: three-dimensional elasticity. North-Holland

  12. Franzone PC, Pavarino LF, Scacchi S (2015) Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl Numer Math 95:140–153

    Article  MathSciNet  Google Scholar 

  13. Franzone PC, Pavarino LF, Scacchi S (2018) A numerical study of scalable cardiac electro-mechanical solvers on HPC architectures. Front Physiol 9:268

    Article  Google Scholar 

  14. Gao H, Wang H, Berry C, Luo X, Griffith BE (2014) Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int J Numer Meth Bio 30(11):1199–1222

    Article  MathSciNet  Google Scholar 

  15. Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev 47(4):629–705

    Article  MathSciNet  Google Scholar 

  16. Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Comput Mech 45(2–3):227–243

    Article  MathSciNet  Google Scholar 

  17. Guan D, Ahmad F, Theobald P, Soe S, Luo X, Gao H (2019) On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law. Biomech Model Mechanobiol 18(4):1213–32

    Article  Google Scholar 

  18. Guccione JM, McCulloch AD, Waldman L (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. ASME J Biomech Eng 113:42–55

    Article  Google Scholar 

  19. Gurev V, Pathmanathan P, Fattebert JL, Wen HF, Magerlein J, Gray RA, Richards DF, Rice JJ (2015) A high-resolution computational model of the deforming human heart. Biomech Model Mechanobiol 14(4):829–849

    Article  Google Scholar 

  20. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A: Math Phys Eng Sci 367(1902):3445–3475

    Article  MathSciNet  Google Scholar 

  21. Hosoi A, Washio T, Okada JI, Kadooka Y, Nakajima K, Hisada T (2010) A multi-scale heart simulation on massively parallel computers. In: SC’10: Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE, pp 1–11

  22. Kong F, Cai XC (2016) A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry. SIAM J Sci Comput 38(2):C73–C95

    Article  MathSciNet  Google Scholar 

  23. Land S, Niederer SA, Smith NP (2011) Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Trans Biomed Eng 59(5):1219–1228

    Article  Google Scholar 

  24. Land S, Gurev V, Arens S, Augustin CM, Baron L, Blake R, Bradley C, Castro S, Crozier A, Favino M et al (2015) Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc R Soc A: Math Eng Sci 471(2184):20150641

    Article  Google Scholar 

  25. Langdon S, Chernecky R, Pereira C, Abdulla D, Lee J (1999) Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 20(2):137–153

    Article  Google Scholar 

  26. Merodio J, Ogden R (2006) The influence of the invariant I8 on the stress-deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids. Int J Non-Linear Mech 41(4):556–563

    Article  Google Scholar 

  27. Möller T, Hughes JF (1999) Efficiently building a matrix to rotate one vector to another. J Graph Tools 4(4):1–4

    Article  Google Scholar 

  28. Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast Phys Sci Solids 61(1–3):113–141

    MATH  Google Scholar 

  29. Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac tissue. Int J Numer Meth Biol 28(1):52–71

    Article  MathSciNet  Google Scholar 

  30. Okada J, Washio T, Hisada T (2010) Study of efficient homogenization algorithms for nonlinear problems. Comput Mech 46(2):247–258

    Article  MathSciNet  Google Scholar 

  31. Pavarino L, Scacchi S, Zampini S (2015) Newton–Krylov-BDDC solvers for nonlinear cardiac mechanics. Comput Method Appl Mech Eng 295:562–580

    Article  MathSciNet  Google Scholar 

  32. Pavarino L, Scacchi S, Verdi C, Zampieri E, Zampini S (2017) Scalable BDDC algorithms for cardiac electromechanical coupling. Domain decomposition methods in science and engineering XXIII. Springer, New York, pp 261–268

    Chapter  Google Scholar 

  33. Pinto J, Fung Y (1973) Mechanical properties of the heart muscle in the passive state. J Biomech 6(6):597–616

    Article  Google Scholar 

  34. Reumann M, Fitch BG, Rayshubskiy A, Keller DU, Seemann G, Dossel O, Pitman MC, Rice JJ (2009) Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations. In: 2009 annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 2795–2798

  35. Riviere B (2008) Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM, Philadelphia

    Book  Google Scholar 

  36. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  Google Scholar 

  37. Santiago A, Aguado-Sierra J, Zavala-Aké M, Doste-Beltran R, Gómez S, Arís R, Cajas JC, Casoni E, Vázquez M (2018) Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Meth Biol 34(12):e3140

    Article  MathSciNet  Google Scholar 

  38. Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol-Heart C 275(6):H2308–H2318

    Article  Google Scholar 

  39. Shen JJ (2016) A structurally based viscoelastic model for passive myocardium in finite deformation. Comput Mech 58(3):491–509

    Article  MathSciNet  Google Scholar 

  40. Toussaint N, Sermesant M, Stoeck CT, Kozerke S, Batchelor PG (2010) In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. International conference on medical image computing and computer-assisted intervention. Springer, New York, pp 418–425

    Google Scholar 

  41. Wang H, Luo X, Gao H, Ogden R, Griffith B, Berry C, Wang T (2013) A modified Holzapfel–Ogden law for a residually stressed finite strain model of the human left ventricle in diastole. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-013-0488-x

    Article  Google Scholar 

  42. Wong J, Kuhl E (2014) Generating fibre orientation maps in human heart models using Poisson interpolation. Comput Methods Biomech Biomed Eng 17(11):1217–1226

    Article  Google Scholar 

  43. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R&D Program of China 2016YFB0200601, Shenzhen grants under ZDSYS201703031711426 and JCYJ20180507182506416, and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC01040100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongliang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chen, R. & Cai, XC. A highly parallel implicit domain decomposition method for the simulation of the left ventricle on unstructured meshes. Comput Mech 66, 1461–1475 (2020). https://doi.org/10.1007/s00466-020-01912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01912-3

Keywords

Navigation