Skip to main content
Log in

Phase field fracture in elasto-plastic solids: a length-scale insensitive model for quasi-brittle materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 22 April 2021

This article has been updated

Abstract

Phase-field methods for fracture have been integrated with plasticity for better describing constitutive behaviours. In most of the previous phase-field models, however, the length-scale parameter must be interpreted as a material property in order to match the material strength in experiments. This study presents a phase-field model for fracture coupled with plasticity for quasi-brittle materials with emphasis on insensitivity of the length-scale parameter. The proposed model is formulated using variational principles and implemented numerically in the finite element framework. The effective yield stress is calibrated to vary with the length-scale parameter such that the tensile strength remains the same. Moreover, semi-analytical solutions are derived to demonstrate that the length-scale parameter has a negligible effect on the stress–displacement curve. Five representative examples are considered here to validate the phase-field model for fracture in quasi-brittle materials. The simulated force–displacement curves and crack paths agree well with the corresponding experimental results. Importantly, it is found that the global structural response is insensitive to the length scale though it may influence the size of the failure zone. In most cases, a large length-scale parameter can be used for saving the computational cost by allowing the use of a coarse mesh. On the other hand, a sufficiently small length-scale parameter can be selected to prevent overly diffusive damage, making it possible for the proposed phase-field model to simulate the fracture behaviour with \( \varGamma \)-convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Change history

References

  1. Nguyen NH, Bui HH, Nguyen GD, Kodikara J (2017) A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties. Int J Plast 98:175–196

    Google Scholar 

  2. Zhou F, Molinari J-F (2004) Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. Int J Numer Methods Eng 59:1–24

    MATH  Google Scholar 

  3. Azevedo NM, Lemos J (2006) Hybrid discrete element/finite element method for fracture analysis. Comput Methods Appl Mech Eng 195:4579–4593

    MATH  Google Scholar 

  4. Mueller R, Maugin G (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    MathSciNet  MATH  Google Scholar 

  5. Miehe C, Gürses E, Birkle M (2007) A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int J Fract 145:245–259

    MATH  Google Scholar 

  6. Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428

    MATH  Google Scholar 

  7. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    MathSciNet  MATH  Google Scholar 

  8. Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int J Numer Methods Eng 53:2549–2568

    MATH  Google Scholar 

  9. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    MathSciNet  MATH  Google Scholar 

  10. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    MathSciNet  MATH  Google Scholar 

  11. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    MathSciNet  MATH  Google Scholar 

  12. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    MathSciNet  MATH  Google Scholar 

  13. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129

    Google Scholar 

  14. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Google Scholar 

  15. Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93:105504

    Google Scholar 

  16. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    MathSciNet  MATH  Google Scholar 

  17. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Google Scholar 

  18. Miehe C, Schaenzel L-M, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 294:449–485

    MathSciNet  MATH  Google Scholar 

  19. Zhou S, Zhuang X, Zhu H, Rabczuk T (2018) Phase field modelling of crack propagation, branching and coalescence in rocks. Theor Appl Fract Mech 96:174–192

    Google Scholar 

  20. Areias P, Rabczuk T, Msekh M (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350

    MathSciNet  MATH  Google Scholar 

  21. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 69:102–109

    Google Scholar 

  22. Wu C, Fang J, Zhou S, Zhang Z, Sun G, Steven GP, Li Q (2019) Level-set topology optimization for maximizing fracture resistance of brittle materials using phase-field fracture model. Int J Numer Methods Eng 121:2929–2945

    MathSciNet  Google Scholar 

  23. Xia L, Da D, Yvonnet J (2018) Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Comput Methods Appl Mech Eng 332:234–254

    MathSciNet  MATH  Google Scholar 

  24. Russ JB, Waisman H (2019) Topology optimization for brittle fracture resistance. Comput Methods Appl Mech Eng 347:238–263

    MathSciNet  MATH  Google Scholar 

  25. Neitzel I, Wick T, Wollner W (2017) An optimal control problem governed by a regularized phase-field fracture propagation model. SIAM J Control Optim 55:2271–2288

    MathSciNet  MATH  Google Scholar 

  26. Neitzel I, Wick T, Wollner W (2019) An optimal control problem governed by a regularized phase-field fracture propagation model. Part II: the regularization limit. SIAM J Control Optim 57:1672–1690

    MathSciNet  MATH  Google Scholar 

  27. He W, Wu Y-F, Liew K, Wu Z (2006) A 2D total strain based constitutive model for predicting the behaviors of concrete structures. Int J Eng Sci 44:1280–1303

    Google Scholar 

  28. Karsan ID, Jirsa JO (1969) Behavior of concrete under compressive loadings. J Struct Div 66:656–666

    Google Scholar 

  29. Gopalaratnam V, Shah SP (1985) Softening response of plain concrete in direct tension. J Proc 82:310–323

    Google Scholar 

  30. Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43:583–612

    MATH  Google Scholar 

  31. Cicekli U, Voyiadjis GZ, Al-Rub RKA (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23:1874–1900

    MATH  Google Scholar 

  32. Voyiadjis GZ, Taqieddin ZN, Kattan PI (2008) Anisotropic damage–plasticity model for concrete. Int J Plast 24:1946–1965

    MATH  Google Scholar 

  33. Grassl P, Xenos D, Nyström U, Rempling R, Gylltoft K (2013) CDPM2: A damage-plasticity approach to modelling the failure of concrete. Int J Solids Struct 50:3805–3816

    Google Scholar 

  34. Daneshyar A, Ghaemian M (2017) Coupling microplane-based damage and continuum plasticity models for analysis of damage-induced anisotropy in plain concrete. Int J Plast 95:216–250

    Google Scholar 

  35. Miehe C, Hofacker M, Schänzel L-M, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput Methods Appl Mech Eng 294:486–522

    MathSciNet  MATH  Google Scholar 

  36. Hofacker M, Miehe C (2012) A phase field model for ductile to brittle failure mode transition. PAMM 12:173–174

    Google Scholar 

  37. Ulmer H, Hofacker M, Miehe C (2013) Phase field modeling of brittle and ductile fracture. PAMM 13:533–536

    Google Scholar 

  38. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

    MathSciNet  MATH  Google Scholar 

  39. Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166

    MathSciNet  MATH  Google Scholar 

  40. Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE (2015) A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int J Plast 65:269–296

    Google Scholar 

  41. Duda FP, Ciarbonetti A, Toro S, Huespe AE (2018) A phase-field model for solute-assisted brittle fracture in elastic-plastic solids. Int J Plast 102:16–40

    Google Scholar 

  42. Alessi R, Marigo J-J, Maurini C, Vidoli S (2018) Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples. Int J Mech Sci 149:559–576

    Google Scholar 

  43. Rodriguez P, Ulloa J, Samaniego C, Samaniego E (2018) A variational approach to the phase field modeling of brittle and ductile fracture. Int J Mech Sci 144:502–517

    Google Scholar 

  44. Choo J, Sun W (2018) Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow. Comput Methods Appl Mech Eng 330:1–32

    MathSciNet  MATH  Google Scholar 

  45. Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62:815–833

    MathSciNet  MATH  Google Scholar 

  46. Kienle D, Aldakheel F, Keip M-A (2019) A finite-strain phase-field approach to ductile failure of frictional materials. Int J Solids Struct 172:147–162

    Google Scholar 

  47. Fang J, Wu C, Li J, Liu Q, Wu C, Sun G, Qing L (2019) Phase field fracture in elasto-plastic solids: variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening. Int J Mech Sci 156:382–396

    Google Scholar 

  48. Wick T (2016) Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity. Comput Mech 57:1017–1035

    MathSciNet  MATH  Google Scholar 

  49. Lee S, Wheeler MF, Wick T (2016) Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput Methods Appl Mech Eng 305:111–132

    MathSciNet  MATH  Google Scholar 

  50. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    MathSciNet  MATH  Google Scholar 

  51. Linse T, Hennig P, Kästner M, de Borst R (2017) A convergence study of phase-field models for brittle fracture. Eng Fract Mech 184:307–318

    Google Scholar 

  52. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    MATH  Google Scholar 

  53. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Google Scholar 

  54. Pham K, Amor H, Marigo J-J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20:618–652

    Google Scholar 

  55. Nguyen TT, Yvonnet J, Bornert M, Chateau C, Sab K, Romani R, Le Roy R (2016) On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int J Fract 197:213–226

    Google Scholar 

  56. Zhang X, Vignes C, Sloan SW, Sheng D (2017) Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput Mech 59:737–752

    MathSciNet  Google Scholar 

  57. Mesgarnejad A, Bourdin B, Khonsari M (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437

    MathSciNet  MATH  Google Scholar 

  58. Wu J-Y, Nguyen VP (2018) A length scale insensitive phase-field damage model for brittle fracture. J Mech Phys Solids 119:20–42

    MathSciNet  Google Scholar 

  59. Al-Rub RKA, Darabi MK, Little DN, Masad EA (2010) A micro-damage healing model that improves prediction of fatigue life in asphalt mixes. Int J Eng Sci 48:966–990

    Google Scholar 

  60. Brünig M (2001) A framework for large strain elastic–plastic damage mechanics based on metric transformations. Int J Eng Sci 39:1033–1056

    MATH  Google Scholar 

  61. Kuhn C, Noll T, Müller R (2016) On phase field modeling of ductile fracture. GAMM-Mitteilungen 39:35–54

    MathSciNet  MATH  Google Scholar 

  62. Miehe C, Teichtmeister S, Aldakheel F (2016) Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos Trans R Soc A 374:20150170

    MathSciNet  MATH  Google Scholar 

  63. Al-Rub RKA, Voyiadjis GZ (2003) On the coupling of anisotropic damage and plasticity models for ductile materials. Int J Solids Struct 40:2611–2643

    MATH  Google Scholar 

  64. Grassl P, Jirásek M (2006) Damage-plastic model for concrete failure. Int J Solids Struct 43:7166–7196

    MATH  Google Scholar 

  65. Alessi R, Marigo J-J, Vidoli S (2015) Gradient damage models coupled with plasticity: variational formulation and main properties. Mech Mater 80:351–367

    Google Scholar 

  66. Yu MH (2011) Unified strength theory and its applications. Springer, Berlin

    Google Scholar 

  67. Wang P, Qu S (2018) Analysis of ductile fracture by extended unified strength theory. Int J Plast 104:196–213

    Google Scholar 

  68. Fang J, Wu C, Liu Q, Sun G, Li Q (2019) Implicit integration of the unified yield criterion in the principal stress space. J Eng Mech 145:04019041

    Google Scholar 

  69. Fang J, Wu C, Rabczuk T, Wu C, Ma C, Sun G, Li Q (2019) Phase field fracture in elasto-plastic solids: abaqus implementation and case studies. Theor Appl Fract Mech 103:102252

    Google Scholar 

  70. Dufour F, Legrain G, Pijaudier-Cabot G, Huerta A (2012) Estimation of crack opening from a two-dimensional continuum-based finite element computation. Int J Numer Anal Meth Geomech 36:1813–1830

    Google Scholar 

  71. Nguyen GD, Houlsby GT (2007) Non-local damage modelling of concrete: a procedure for the determination of model parameters. Int J Numer Anal Methods Geomech 31:867–891

    MATH  Google Scholar 

  72. Nguyen GD, Houlsby GT (2008) A coupled damage–plasticity model for concrete based on thermodynamic principles: part II: non-local regularization and numerical implementation. Int J Numer Anal Methods Geomech 32:391–413

    MATH  Google Scholar 

  73. Nguyen GD (2011) A damage model with evolving nonlocal interactions. Int J Solids Struct 48:1544–1559

    MATH  Google Scholar 

  74. Bellettini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15:201–224

    MathSciNet  MATH  Google Scholar 

  75. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91:5–148

    MathSciNet  MATH  Google Scholar 

  76. Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calc Var Partial Differ Equ 55:45

    MathSciNet  MATH  Google Scholar 

  77. Alessi R, Ambati M, Gerasimov T, Vidoli S, De Lorenzis L (2018) Comparison of phase-field models of fracture coupled with plasticity advances in computational plasticity. Springer, Berlin, pp 1–21

    Google Scholar 

  78. Shi C, van Dam AG, van Mier JG, Sluys B (2000) Crack interaction in concrete. Mater Build Struct 6:125–131

    Google Scholar 

  79. Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton (Doctoral dissertation) Innsbruck University, Innsbruck

  80. Wu J-Y (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    MathSciNet  Google Scholar 

  81. Arrea M, Ingraffea R (1982) Mixed-mode crack propagation in mortar and concrete Technical Report 81-13 Department of Structural Engineering, Cornell University

  82. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799

    MathSciNet  MATH  Google Scholar 

  83. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343

    MATH  Google Scholar 

  84. Oliver J, Huespe AE, Pulido M, Chaves E (2002) From continuum mechanics to fracture mechanics: the strong discontinuity approach. Eng Fract Mech 69:113–136

    Google Scholar 

  85. Jirásek M, Grassl P (2008) Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng Fract Mech 75:1921–1943

    Google Scholar 

  86. Cendón D, Gálvez J, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103:293–310

    Google Scholar 

  87. Gálvez J, Elices M, Guinea G, Planas J (1998) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94:267–284

    Google Scholar 

  88. Le LA, Nguyen GD, Bui HH, Sheikh AH, Kotousov A (2018) Localised failure mechanism as the basis for constitutive modelling of geomaterials. Int J Eng Sci 133:284–310

    MathSciNet  MATH  Google Scholar 

  89. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The University of Technology Sydney (UTS), Australia through a Chancellor’s Postdoctoral Research Fellowship and by Australian Research Council (ARC) through Discovery Projects (DP190103752).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguang Fang or Chengqing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Governing equations from the energetic principles and hybrid formulation

Appendix A: Governing equations from the energetic principles and hybrid formulation

1.1 First-order stability condition

The energetic principles, namely stability condition, energy balance and irreversibility condition, are used to determine the state variables (\( {\mathbf{u}}, \lambda , d \)). The first-order stability condition yields:

$$ \delta \varPi \ge 0,\quad \quad \quad \forall \left( {{\mathbf{u}}, \lambda , d} \right)\,{\text{admissible}} $$
(A1)

Use of the definition of the total energy in Eq. (8) leads to

$$ \begin{aligned} \delta \varPi & = \mathop \int\nolimits_{\Omega }^{{}} \left( {\left[ { - 2\left( {1 - d} \right)\left( {\frac{1}{2} {\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} + \sigma_{y0} \lambda } \right)\delta d + \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \nabla d \cdot \nabla \delta d + d \delta d} \right)} \right]} \right. \\ & \left. {\quad +\,\left( {1 - d} \right)^{2} {\varvec{\upsigma}}_{0} :\delta {\varvec{\upvarepsilon}} + \left( {1 - d} \right)^{2} \left( { - {\varvec{\upsigma}}_{0} :\frac{{{\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} }}{{{\text{d}}\lambda }} + \sigma_{y0} } \right)\delta \lambda } \right){\text{d}}\varOmega - \mathop \int\nolimits_{\varOmega }^{{}} {\mathbf{b}} \cdot \delta {\mathbf{u}} {\text{d}}\varOmega - \mathop \int\nolimits_{\partial \varOmega }^{{}} {\mathbf{t}} \cdot \delta {\mathbf{u}} {\text{d}}\partial \varOmega \\ & \ge 0 \\ \end{aligned} $$
(A2)

I. Equilibrium equation.

For \( \delta d = 0 \) and \( \delta \lambda = 0 \), Eq. (A2) gives

$$ \mathop \int\nolimits_{\Omega }^{{}} {\varvec{\upsigma}}:\delta {\varvec{\upvarepsilon}}{\text{d}}\varOmega - \mathop \int\nolimits_{\varOmega }^{{}} {\mathbf{b}} \cdot \delta {\mathbf{u}} {\text{d}}\varOmega - \mathop \int\nolimits_{\partial \varOmega }^{{}} {\mathbf{t}} \cdot \delta {\mathbf{u}} {\text{d}}\partial \varOmega = 0 $$
(A3)

This is the weak form of the equilibrium equation. Integrating the first term of (A3) by parts gives

$$ \mathop \int\nolimits_{\Omega }^{{}} \left( {{\text{div}}{\varvec{\upsigma}} - {\mathbf{b}}} \right) \cdot \delta {\mathbf{u}}{\text{d}}\varOmega + \mathop \int\nolimits_{\partial \varOmega }^{{}} \left( {{\mathbf{n}} \cdot {\varvec{\upsigma}} - {\mathbf{t}}} \right) \cdot \delta {\mathbf{u}} {\text{d}}\partial \varOmega = 0 $$
(A4)

where \( {\mathbf{n}} \) is the outward normal to the boundary \( \partial \varOmega \). Then, the following local equilibrium equation can be obtained:

$$ {\text{div}}{\varvec{\upsigma}} + {\mathbf{b}} = 0 \quad {\text{in }}\varOmega $$
(A5a)
$$ {\mathbf{n}} \cdot {\varvec{\upsigma}} = {\mathbf{t}} \;{\text{on}} \;\partial \varOmega^{\text{s}} $$
(A5b)

along with the Dirichlet boundary condition:

$$ {\mathbf{u}} = {\tilde{\mathbf{u}}}\quad {\text{on}} \;\partial \varOmega^{\text{h}} $$
(A5c)

II. Damage yield criteria.

For \( \delta {\mathbf{u}} = 0 \) and \( \delta \lambda = 0 \), Eq. (A2) leads to

$$ \mathop \int\nolimits_{\Omega }^{{}} \left[ { - 2\left( {1 - d} \right)\left( {\frac{1}{2} {\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} + \sigma_{y0} \lambda } \right)\delta d + \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \nabla d \cdot \nabla \delta d + d \delta d} \right)} \right]{\text{d}}\varOmega \ge 0 $$
(A6)

which is the weak form of the damage criterion.

Then, Eq. (A6) gives

$$ f^{d} \left( {{\mathbf{u}}, \lambda , d} \right) \le 0\quad {\text{in}} \;\varOmega $$
(A7a)
$$ {\mathbf{n}} \cdot \nabla d \ge 0\quad {\text{on}} \;\partial \varOmega $$
(A7b)

with \( f^{d} \left( {{\mathbf{u}},\lambda ,d} \right) \) being the damage yield surface defined as:

$$ f^{d} \left( {{\mathbf{u}},\lambda ,d} \right)\text{ := }2\left( {1 - d} \right)\left( {\frac{1}{2}{\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} + \sigma_{y0} \lambda } \right) + \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \Delta d - d} \right) $$
(A7c)

III. Plasticity yield criteria.

For \( \delta {\mathbf{u}} = 0 \) and \( \delta d = 0 \), Eq. (A2) leads to

$$ \mathop \int\nolimits_{\Omega }^{{}} \left[ {\left( {1 - d} \right)^{2} \left( { - {\varvec{\upsigma}}_{0} :\frac{{{\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} }}{{{\text{d}}\lambda }} + \sigma_{y0} } \right)\delta \lambda } \right]{\text{d}}\varOmega \ge 0 $$
(A8)

which gives

$$ f^{p} ({\mathbf{u}}, \lambda , d )\le 0\quad {\text{in}} \;\varOmega $$
(A9a)

with \( f^{p} ({\mathbf{u}}, \lambda , d) \) being the plasticity yield surface defined as

$$ f^{p} ({\mathbf{u}}, \lambda , d )\text{ := }\left( {1 - d} \right)^{2} \left[ {\sigma_{0}^{\text{eq}} \left( {{\mathbf{u}}, \lambda } \right) - \sigma_{y0} } \right] $$
(A9b)

where \( \sigma_{0}^{\text{eq}} \) is the effective (undamaged) equivalent stress,

$$ \sigma_{0}^{\text{eq}} \left( {{\mathbf{u}}, \lambda } \right)\text{ := }{\varvec{\upsigma}}_{0} :\frac{{{\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} }}{{{\text{d}}\lambda }} $$
(A9c)

The effective (undamaged) plasticity yield criterion can then be formulated as,

$$ f_{0}^{p} ({\mathbf{u}}, \lambda )\text{ := } \sigma_{0}^{\text{eq}} \left( {{\mathbf{u}}, \lambda } \right) - \sigma_{y0} $$
(A9d)

Thus,

$$ \frac{{{\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} }}{{{\text{d}}\lambda }} = \frac{{{\text{d}}\sigma_{0}^{\text{eq}} }}{{{\text{d}}{\varvec{\upsigma}}_{0} }} = \frac{{\partial f_{0}^{p} }}{{\partial {\varvec{\upsigma}}_{0} }} = \frac{{\partial f^{p} }}{{\partial {\varvec{\upsigma}}}}\quad \Rightarrow {\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} = {\text{d}}\lambda {\mathbf{a}} $$
(A9e)

where \( {\mathbf{a}} = \frac{{\partial f^{p} }}{{\partial {\varvec{\upsigma}}}} = \frac{{\partial f_{0}^{p} }}{{\partial {\varvec{\upsigma}}_{0} }} \) stands for the normal direction of the plasticity yield function. Note that Eq. (A9e) is consistent with the associated plasticity. From Eq. (A9e), the evolution of the plastic strain does not depend on the phase-field damage, enabling a straightforward use of classical elasto-plastic algorithms.

1.2 Consistency conditions from energy balance principle

The energy balance principle states that the time derivative of the total energy should be zero, i.e., \( \dot{\varPi } = 0. \) Hence,

$$ \begin{aligned} \dot{\varPi } & = \mathop \int\nolimits_{\Omega }^{{}} - f^{d} ({\mathbf{u}}, \lambda , d ) \dot{d} + \left( {{\text{div}}{\varvec{\upsigma}} - \varvec{b}} \right) \cdot {\dot{\mathbf{u}}} - f^{p} ({\mathbf{u}}, \lambda , d )\dot{\lambda }{\text{d}}\varOmega + \mathop \int\nolimits_{\partial \varOmega }^{{}} \left( {{\mathbf{n}} \cdot {\varvec{\upsigma}} - {\mathbf{t}}} \right) \cdot {\dot{\mathbf{u}}} {\text{d}}\partial \varOmega \\ & \quad + g_{f} l_{c} \mathop \int\nolimits_{\partial \varOmega }^{{}} {\mathbf{n}} \cdot \nabla d\dot{d} {\text{d}}\partial \varOmega = 0 \\ \end{aligned} $$
(A10)

Combination of Eqs. (A5a) and (A5b) and Eq. (A10) yields

$$ \dot{\varPi } = \mathop \int\nolimits_{\Omega }^{{}} - f^{d} ({\mathbf{u}}, \lambda , d ) \dot{d}{\text{d}}\varOmega + \mathop \int\nolimits_{\Omega }^{{}} - f^{p} ({\mathbf{u}}, \lambda , d )\dot{\lambda }{\text{d}}\varOmega + g_{f} l_{c} \mathop \int\nolimits_{\partial \varOmega }^{{}} {\mathbf{n}} \cdot \nabla d\dot{d} {\text{d}}\partial \varOmega = 0 $$
(A11)

Taking advantage of the irreversibility conditions together with Eqs. (A7a), (A7b) and (A9a), each term in Eq. (A11) should be equal to 0. Thus, the consistency conditions can be derived:

$$ f^{p} ({\mathbf{u}}, \lambda , d )\dot{\lambda } = 0\quad {\text{in }}\varOmega $$
(A12a)
$$ f^{d} ({\mathbf{u}}, \lambda , d ) \dot{d} = 0\quad {\text{in }}\varOmega $$
(A12b)
$$ {\mathbf{n}} \cdot \nabla d\dot{d} = 0\quad {\text{on}}\,\partial \varOmega $$
(A12c)

1.3 Clausius–Duhem dissipation inequality

The dissipated power \( \dot{D} \) is required to have a non-negative value:

$$ \begin{aligned} \dot{D} = \mathop \int\nolimits_{\Omega }^{{}} \dot{\varphi }{\text{d}}\varOmega & = \mathop \int\nolimits_{\Omega }^{{}} \left( { - 2\left( {1 - d} \right)\sigma_{y0} \lambda - \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \Delta d - d} \right)} \right)\dot{d}{\text{d}}\varOmega \\ & \quad + \mathop \int\nolimits_{\Omega }^{{}} \left( {1 - d} \right)^{2} \sigma_{y0} \dot{\lambda }{\text{d}}\varOmega + \mathop \int\nolimits_{\partial \varOmega }^{{}} g_{f} l_{c} {\mathbf{n}} \cdot \nabla d\dot{d} {\text{d}}\partial \varOmega \ge 0 \\ \end{aligned} $$
(A13)

in which the first integral is positive since \( \dot{d} \ge 0 \) and \( - 2\left( {1 - d} \right)\sigma_{y0} \lambda - \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \Delta d - d} \right) = - f^{d} \left( {{\mathbf{u}}, \lambda , d} \right) + \left( {1 - d} \right) {\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} \ge 0 \); the second integral is positive simply because \( \sigma_{y0} > 0 \) and \( \dot{\lambda } \ge 0 \); and the last integral is equal to 0 directly from Eq. (A12c). Thus, the constitutive model of the elastoplastic-phase-field damage problem is thermodynamically admissible.

1.4 Alternative handling of phase-field equations and hybrid formulation

The variational inequality of Eq. (A6) accounts for the unilateral effect of the damage irreversibility. Here, if we first neglect the damage irreversibility, Eq. (A6) becomes

$$ \mathop \int\nolimits_{\Omega }^{{}} \left[ { - 2\left( {1 - d} \right)\left( {\frac{1}{2} {\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} + \sigma_{y0} \lambda } \right) \delta d + \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \nabla d \cdot \delta \nabla d + d \delta d} \right)} \right]{\text{d}}\varOmega = 0 $$
(A14)

The irreversibility of crack growth is then enforced by introducing a history functional \( {\mathcal{H}} \):

$$ {\mathcal{H}}\text{ := }\mathop {\hbox{max} }\limits_{{\tau \in \left[ {0,t} \right]}} \left( {\frac{1}{2}{\varvec{\upvarepsilon}}^{\text{e}} :{\varvec{\upsigma}}_{0} } \right) + \sigma_{y0} \lambda $$
(A15)

Furthermore, in order to consider anisotropic damage, only the tensile part of elastic energy density is allowed to drive the evolution of the crack field [16]. Hence, the following history functional \( {\mathcal{H}}^{ + } \) is used to replace \( {\mathcal{H}} \):

$$ {\mathcal{H}}^{ + } \text{ := }\mathop {\hbox{max} }\limits_{{\tau \in \left[ {0,t} \right]}} \left\{ {\frac{\lambda }{2}{\text{tr}}\left( {{\varvec{\upvarepsilon}}^{\text{e}} } \right)_{ + }^{2} + \mu {\text{tr}}\left[ {\left( {{\varvec{\upvarepsilon}}_{ + }^{\text{e}} } \right)^{2} } \right]} \right\} + \sigma_{y0} \lambda $$
(A16)

where \( x_{ + } : = \frac{{\left( {x + \left| x \right|} \right)}}{2} \) and \( {\varvec{\upvarepsilon}}_{ + }^{\text{e}} \) is the positive part of \( {\varvec{\upvarepsilon}}^{\text{e}} \). \( \lambda \) and \( \mu \) are the Lame constants. Thus, the weak form of the governing equation (A6) can be rewritten as:

$$ \mathop \int\nolimits_{\Omega }^{{}} \left[ { - 2\left( {1 - d} \right){\mathcal{H}}^{ + } \delta d + \frac{{g_{f} }}{{l_{c} }}\left( {l_{c}^{2} \nabla d \cdot \delta \nabla d + d \delta d} \right)} \right]{\text{d}}\varOmega = 0 $$
(A17)

which leads to the strong form:

$$ - 2\left( {1 - d} \right){\mathcal{H}}^{ + } + \frac{{g_{f} }}{{l_{c} }}\left( { - l_{c}^{2} \Delta d + d} \right) = 0\quad {\text{in }}\varOmega $$
(A18a)
$$ {\mathbf{n}} \cdot \nabla d = 0\quad {\text{on }}\partial \varOmega $$
(A18b)

Note that the elastic energy density is only decomposed in the phase-field problem but not in the displacement field problem. In other words, the degradation function is applied to the whole elastic energy density in the definition of the nominal stress in Eq. (5). As a result, a linear momentum balance equation can remain within a staggered scheme, and thus the computational efficiency can be significantly improved, though the rigorous variational consistency of the problem could be somewhat lost. This is the so-called hybrid formulation for phase-field fracture and interested readers can refer to Ambati et al. [89] for more details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Wu, C., Rabczuk, T. et al. Phase field fracture in elasto-plastic solids: a length-scale insensitive model for quasi-brittle materials. Comput Mech 66, 931–961 (2020). https://doi.org/10.1007/s00466-020-01887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01887-1

Keywords

Navigation