Skip to main content

Advertisement

Log in

Isogeometric analysis of ice accretion on wind turbine blades

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

For wind turbines operating in cold weather conditions, ice accretion is an established issue that remains an obstacle in effective turbine operation. While the aerodynamic performance of wind turbine blades with ice accretion has received considerable research attention, few studies have investigated the structural impact of blade ice accretion. This work proposes an adaptable projection-based method to superimpose complex ice configurations onto a baseline structure. The proposed approach provides an efficient methodology to include ice accretion in the high-fidelity isogeometric shell analysis of a realistic wind turbine blade. Linear vibration and nonlinear deflection analyses of the blade are performed for various ice configurations to demonstrate the impact of different ice accretion distributions on structural performance. These analyses indicate decreases in the blade natural frequencies and deflection under icing conditions. Such ice-induced changes clearly reveal the need for structural design consideration for turbines operating under icing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sailor DJ, Smith M, Hart M (2008) Climate change implications for wind power resources in the Northwest United States. Renew Energy 33:2393–2406

    Google Scholar 

  2. Battisti L (2015) Wind turbines in cold climates: icing impacts and mitigation systems. Springer International Publishing, Cham

    Google Scholar 

  3. Jasinski WJ, Noe SC, Selig MS, Bragg MB (1998) Wind turbine performance under icing conditions. J Sol Energy Eng 120:60–65

    Google Scholar 

  4. Hochart C, Fortin G, Perron J, Ilinca A (2008) Wind turbine performance under icing conditions. Wind Energy 11:319–333

    Google Scholar 

  5. Virk MS, Homola MC, Nicklasson PJ (2010) Relation between angle of attack and atmospheric ice accretion on large wind turbine’s blade. Wind Eng 34(6):607–613

    Google Scholar 

  6. Virk MS, Homola MC, Nicklasson PJ (2010) Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles. Wind Eng 34(2):207–218

    Google Scholar 

  7. Barber S, Wang Y, Jafari S, Chokani N, Abhari RS (2011) The impact of ice formation on wind turbine performance and aerodynamics. J Sol Energy Eng 133:011007

    Google Scholar 

  8. Nicklasson PJ, Homola MC, Virk MS, Sundsbø PA (2012) Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 15:379–389

    Google Scholar 

  9. Hudecz A, Koss H, Hansen MOL (2013) Ice accretion on wind turbine blades. In: 15th international workshop on atmospheric icing of structures (IWAIS XV), St. Johns, Canada

  10. Etemaddar M, Hansen MOL, Moan T (2014) Wind turbine aerodynamic response under atmospheric icing conditions. Wind Energy 17(2):241–265

    Google Scholar 

  11. Yirtici O, Tuncer IH, Ozgen S (2016) Ice accretion prediction on wind turbines and consequent power losses. J Phys Conf Ser 753:022022

    Google Scholar 

  12. Blasco P, Palacios J, Schmitz S (2017) Effect of icing roughness on wind turbine power production. Wind Energy 20(4):601–617

    Google Scholar 

  13. Gao L, Liu Y, Zhou W, Hu H (2019) An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process. Renew Energy 133:663–675

    Google Scholar 

  14. Yirtici O, Ozgen S, Tuncer IH (2019) Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy 22(7):945–958

    Google Scholar 

  15. Gao L, Liu Y, Hu H (2019) An experimental investigation of dynamic ice accretion process on a wind turbine airfoil model considering various icing conditions. Int J Heat Mass Transf 133:930–939

    Google Scholar 

  16. Gao L, Veerakumar R, Liu Y, Hu H (2019) Quantification of the 3D shapes of the ice structures accreted on a wind turbine airfoil model. J Vis 22:661–667

    Google Scholar 

  17. Alsabagh ASY, Tiu W, Xu Y, Virk MS (2013) A review of the effects of ice accretion on the structural behavior of wind turbines. Wind Eng 37:59–70

    Google Scholar 

  18. Gantasala S, Luneno J-C, Aidanpää J-O (2018) Identification of ice mass accumulated on wind turbine blades using its natural frequencies. Wind Eng 42:66–84

    Google Scholar 

  19. Alsabagh ASY, Xu Y, Virk MS, Badran O (2015) Atmospheric ice loading and its impact on natural frequencies of wind turbines. Wind Eng 39:83–96

    Google Scholar 

  20. Gantasala S, Luneno J-C, Aidanpää J-O (2016) Influence of icing on the modal behavior of wind turbine blades. Energies 9:862

    Google Scholar 

  21. Gantasala S, Tabatabaei N, Cervantes M, Aidanpää J-O (2019) Numerical investigation of the aeroelastic behavior of a wind turbine with iced blades. Energies 12(12):2422

    Google Scholar 

  22. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  23. Lorenzo G, Scott MA, Tew K, Hughes TJR, Zhang Y, Liu L, Vilanova G, Gomez H (2016) Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci 113(48):E7663–E7671

    Google Scholar 

  24. Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200

    MathSciNet  MATH  Google Scholar 

  25. Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA). Comput Fluids 142:15–20

    MathSciNet  MATH  Google Scholar 

  26. Takizawa K, Tezduyar TE, Sasaki T (2017) Aorta modeling with the element-based zero-stress state and isogeometric discretization. Comput Mech 59:265–280

    MathSciNet  Google Scholar 

  27. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated Space-time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188

    MathSciNet  MATH  Google Scholar 

  28. Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200

    MathSciNet  MATH  Google Scholar 

  29. Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186

    MathSciNet  MATH  Google Scholar 

  30. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776

    MathSciNet  MATH  Google Scholar 

  31. Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798

    MathSciNet  MATH  Google Scholar 

  32. Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321

    MathSciNet  MATH  Google Scholar 

  33. Kuraishi T, Takizawa K, Tezduyar TE (2019) Space-time Isogeometric flow analysis with built-in Reynolds-equation limit. Math Models Methods Appl Sci 29:871–904

    MathSciNet  MATH  Google Scholar 

  34. Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2020) Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404

    MathSciNet  Google Scholar 

  35. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: Computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419

    MathSciNet  MATH  Google Scholar 

  36. Yan J, Lin S, Bazilevs Y, Wagner GJ (2019) Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Comput Fluids 179:777–789

    MathSciNet  MATH  Google Scholar 

  37. Lorenzo G, Hughes TJR, Dominguez-Frojan P, Reali A, Gomez H (2019) Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth. Proc Natl Acad Sci 116:1152–1161

    Google Scholar 

  38. Terahara T, Takizawa K, Tezduyar TE, Tsushima A, Shiozaki K (2020) Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change. Comput Mech 65:1343–1363

    MathSciNet  MATH  Google Scholar 

  39. Terahara T, Takizawa K, Tezduyar TE, Bazilevs Y, Hsu M-C (2020) Heart valve isogeometric sequentially-coupled FSI analysis with the space-time topology change method. Comput Mech 65:1167–1187

    MathSciNet  MATH  Google Scholar 

  40. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    MathSciNet  MATH  Google Scholar 

  41. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    MathSciNet  MATH  Google Scholar 

  42. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    MathSciNet  MATH  Google Scholar 

  43. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation-free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200:3410–3424

    MathSciNet  MATH  Google Scholar 

  44. Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    MathSciNet  MATH  Google Scholar 

  45. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    MathSciNet  MATH  Google Scholar 

  46. Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905

    MathSciNet  MATH  Google Scholar 

  47. Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    MathSciNet  MATH  Google Scholar 

  48. Buganza Tepole A, Kabaria H, Bletzinger K-U, Kuhl E (2015) Isogeometric Kirchhoff–Love shell formulations for biological membranes. Comput Methods Appl Mech Eng 293:328–347

    MathSciNet  MATH  Google Scholar 

  49. Nguyen-Thanh N, Valizadeh N, Nguyen MN, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T (2015) An extended isogeometric thin shell analysis based on Kirchhoff–Love theory. Comput Methods Appl Mech Eng 284:265–291

    MathSciNet  MATH  Google Scholar 

  50. Oesterle B, Ramm E, Bischoff M (2016) A shear deformable, rotation-free isogeometric shell formulation. Comput Methods Appl Mech Eng 307:235–255

    MathSciNet  MATH  Google Scholar 

  51. Duong TX, Roohbakhshan F, Sauer RA (2017) A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput Methods Appl Mech Eng 316:43–83

    MathSciNet  MATH  Google Scholar 

  52. Casquero H, Liu L, Zhang Y, Reali A, Kiendl J, Gomez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput Aided Des 82:140–153

    MathSciNet  Google Scholar 

  53. Roohbakhshan F, Sauer RA (2017) Efficient isogeometric thin shell formulations for soft biological materials. Biomech Model Mechanobiol 16:1569–1597

    Google Scholar 

  54. Takizawa K, Tezduyar TE, Sasaki T (2019) Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping. Comput Mech 63:681–700

    MathSciNet  MATH  Google Scholar 

  55. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31

    Google Scholar 

  56. Ambati M, Kiendl J, De Lorenzis L (2018) Isogeometric Kirchhoff–Love shell formulation for elasto-plasticity. Comput Methods Appl Mech Eng 340:320–339

    MathSciNet  MATH  Google Scholar 

  57. Liu N, Ren X, Lua J (2020) An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures. Compos Struct 237:111893

    Google Scholar 

  58. Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785

    MathSciNet  MATH  Google Scholar 

  59. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    MathSciNet  MATH  Google Scholar 

  60. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071

    MathSciNet  MATH  Google Scholar 

  61. Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger K-U (2015) Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457

    MathSciNet  MATH  Google Scholar 

  62. Guo Y, Ruess M (2015) Weak Dirichlet boundary conditions for trimmed thin isogeometric shells. Comput Math Appl 70:1425–1440

    MathSciNet  Google Scholar 

  63. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    MathSciNet  MATH  Google Scholar 

  64. Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225

    MATH  Google Scholar 

  65. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500

    MathSciNet  Google Scholar 

  66. Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211

    MathSciNet  MATH  Google Scholar 

  67. Guo Y, Ruess M, Schillinger D (2016) A parameter-free variational coupling approach for trimmed isogeometric thin shells. Comput Mech 59:693–715

    MathSciNet  MATH  Google Scholar 

  68. Zhang X, Jin C, Hu P, Zhu X, Hou W, Xu J, Wang C, Zhang Y, Ma Z-D, Smith H (2016) NURBS modeling and isogeometric shell analysis for complex tubular engineering structures. Comput Appl Math 36:1659–1679

    MathSciNet  MATH  Google Scholar 

  69. Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394

    MathSciNet  MATH  Google Scholar 

  70. Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14

    MathSciNet  MATH  Google Scholar 

  71. Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693

    MathSciNet  MATH  Google Scholar 

  72. Heltai L, Kiendl J, DeSimone A, Reali A (2017) A natural framework for isogeometric fluid–structure interaction based on BEM-shell coupling. Comput Methods Appl Mech Eng 316:522–546

    MathSciNet  MATH  Google Scholar 

  73. Guo Y, Heller J, Hughes TJR, Ruess M, Schillinger D (2018) Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format. Comput Methods Appl Mech Eng 336:39–79

    MathSciNet  MATH  Google Scholar 

  74. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng 34:e2938

    MathSciNet  Google Scholar 

  75. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    MathSciNet  MATH  Google Scholar 

  76. Teschemacher T, Bauer AM, Oberbichler T, Breitenberger M, Rossi R, Wüchner R, Bletzinger K-U (2018) Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis. Adv Model Simul Eng Sci 5:19

    Google Scholar 

  77. Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556

    MathSciNet  MATH  Google Scholar 

  78. Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu M-C, Sarkar S (2019) A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Sci Rep 9:18560

    Google Scholar 

  79. Guo Y, Do H, Ruess M (2019) Isogeometric stability analysis of thin shells: from simple geometries to engineering models. Int J Numer Methods Eng 118:433–458

    MathSciNet  Google Scholar 

  80. Leidinger LF, Breitenberger M, Bauer AM, Hartmann S, Wüchner R, Bletzinger K-U, Duddeck F, Song L (2019) Explicit dynamic isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells. Comput Methods Appl Mech Eng 351:891–927

    MathSciNet  MATH  Google Scholar 

  81. Casquero H, Wei X, Toshniwal D, Li A, Hughes TJR, Kiendl J, Zhang Y (2020) Seamless integration of design and Kirchhoff–Love shell analysis using analysis-suitable unstructured T-splines. Comput Methods Appl Mech Eng 360:112765

    MathSciNet  MATH  Google Scholar 

  82. Nitti A, Kiendl J, Reali A, de Tullio MD (2020) An immersed-boundary/isogeometric method for fluid–structure interaction involving thin shells. Comput Methods Appl Mech Eng 364:112977

    MathSciNet  MATH  Google Scholar 

  83. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    MATH  Google Scholar 

  84. Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372

    MathSciNet  MATH  Google Scholar 

  85. Bazilevs Y, Pigazzini M S, Ellison A, Kim H (2018) A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear. Comput Mech 62:563–585

    MathSciNet  MATH  Google Scholar 

  86. Pigazzini MS, Bazilevs Y, Ellison A, Kim H (2018) A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part II: impact modeling. Comput Mech 62:587–601

    MathSciNet  MATH  Google Scholar 

  87. Pigazzini MS, Bazilevs Y, Ellison A, Kim H (2018) Isogeometric analysis for simulation of progressive damage in composite laminates. J Compos Mater 52:3471–3489

    MATH  Google Scholar 

  88. Pigazzini MS, Kamensky D, van Iersel DAP, Alaydin MD, Remmers JJC, Bazilevs Y (2019) Gradient-enhanced damage modeling in Kirchhoff–Love shells: application to isogeometric analysis of composite laminates. Comput Methods Appl Mech Eng 346:152–179

    MathSciNet  MATH  Google Scholar 

  89. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, Le T-H, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int J Numer Methods Eng 91:571–603

    MathSciNet  MATH  Google Scholar 

  90. Thai CH, Ferreira AJM, Carrera E, Nguyen-Xuan H (2013) Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos Struct 104:196–214

    Google Scholar 

  91. Guo Y, Ruess M (2015) A layerwise isogeometric approach for NURBS-derived laminate composite shells. Compos Struct 124:300–309

    Google Scholar 

  92. Liu N, Jeffers AE (2017) Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos Struct 176:143–153

    Google Scholar 

  93. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebending of wind turbine blades. Int J Numer Methods Eng 89:323–336

    MATH  Google Scholar 

  94. Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MathSciNet  MATH  Google Scholar 

  95. Bazilevs Y, Deng X, Korobenko A, Lanza di Scalea F, Todd MD, Taylor SG (2015) Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J Appl Mech 82:091008

    Google Scholar 

  96. Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840

    MathSciNet  MATH  Google Scholar 

  97. Herrema AJ, Kiendl J, Hsu M-C (2019) A framework for isogeometric-analysis-based optimization of wind turbine blade structures. Wind Energy 22:153–170

    Google Scholar 

  98. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  MATH  Google Scholar 

  99. Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    MATH  Google Scholar 

  100. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398

    MathSciNet  MATH  Google Scholar 

  101. Bazilevs Y, Korobenko A, Deng X, Yan J (2014) Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines. Int J Numer Methods Eng 102:766–783

    MathSciNet  MATH  Google Scholar 

  102. Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174

    MathSciNet  MATH  Google Scholar 

  103. Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83:061010

    Google Scholar 

  104. Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175

    MathSciNet  MATH  Google Scholar 

  105. Bazilevs Y, Yan J, Deng X, Korobenko A (2018) Computer modeling of wind turbines: 2. Free-surface FSI and fatigue-damage. Arch Comput Methods Eng 26:1101–1115

    MathSciNet  Google Scholar 

  106. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  107. Kiendl J (2011) Isogeometric analysis and shape optimal design of shell structures. Ph.D. thesis, Lehrstuhl für Statik, Technische Universität München

  108. Gold LW (1988) On the elasticity of ice plates. Can J Civ Eng 15:1080–1084

    Google Scholar 

  109. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical report NREL/TP-500-38060, National Renewable Energy Laboratory

  110. Resor B R (2013) Definition of a 5MW/61.5m wind turbine blade reference model. Technical report SAND2013-2569, Sandia National Laboratories, Albuquerque, NM

  111. Germanischer Lloyd Hamburg. Guideline for the Certification ofWind Turbines. Technical report, Germanischer Lloyd IndustrialServices GmbH, Hamburg, Germany, 2010

  112. Krishnan JM, Deshpande AP, Kumar PBS (2010) Rheology of complex fluids. Springer, New York

    MATH  Google Scholar 

  113. Hernandez V, Roman JE, Vidal V (2005) SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans Math Softw 31:351–362

    MathSciNet  MATH  Google Scholar 

  114. Roman JE, Campos C, Romero E, Tomas A (2016) SLEPc users manual. Technical report DSIC-II/24/02 - Revision 3.7, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Valencia, Spain

  115. Balay S, Gropp W, McInnes LC, Smith B (2000) PETSc 2.0 users manual. Mathematics and Computer Science Division, Argonne National Laboratory. http://www.mcs.anl.gov/petsc. Accessed 20 Mar 2020

  116. International Electrotechnical Commission. International Standard IEC 61400-1. Wind turbines–Part 1: Design requirements. Geneva, Switzerland, 2005

  117. Jonkman JM, Buhl ML Jr (2005) FAST user’s guide. Technical report NREL/EL-500-38230, National Renewable Energy Laboratory, Golden, CO

Download references

Acknowledgements

E.L. Johnson was partially supported by the U.S. National Science Foundation (NSF) Grant No. DGE-1069283 which funds the activities of the Integrative Graduate Education and Research Traineeship (IGERT) in Wind Energy Science, Engineering, and Policy (WESEP) at Iowa State University. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Johnson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, E.L., Hsu, MC. Isogeometric analysis of ice accretion on wind turbine blades. Comput Mech 66, 311–322 (2020). https://doi.org/10.1007/s00466-020-01852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01852-y

Keywords

Navigation