Skip to main content
Log in

A novel ghost cell boundary model for the explicit moving particle simulation method in two dimensions

Computational Mechanics Aims and scope Submit manuscript

Abstract

The moving particle simulation (MPS) method has proved to be an effective technique to model fluid flows with free surfaces. However, it still remains a challenging task to treat the wall boundary problem with complicated geometries accurately and robustly. The purpose of this work is to propose a two-dimensional ghost cell boundary model for the explicit MPS method to achieve this end. The appeal of the novel model lies in providing an easy and natural treatment for the wall boundary of complicated shapes. On one hand, the wall boundary can be easily represented by using ghost cells of different sizes or shapes (e.g. triangles and quadrilaterals in two dimensions), and ghost cells are constructed in the pre-processing phase. On the other hand, the particle-cell interaction can be modeled by an integral version of the MPS model that requires the specific area of each cell, while the particle-particle interaction near wall boundary is still handled by the conventional version of the MPS model via assuming that each particle takes the same area. In this manner, the particle-cell interaction is modeled naturally. Two numerical examples, i.e. the hydrostatic and dam break tests, are performed to validate the effectiveness of the proposed model, where the effects of the distribution of ghost cells are also numerically investigated. Finally, a numerical case considering a star-shaped obstacle in dam break flows is carried out to demonstrate the capacity of the novel model in dealing with the wall boundary problem with complicated geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Li Z, Tao W (2002) A new stability-guaranteed second-order difference scheme. Numer Heat Transf Part B Fundam 42(4):349–365

    Article  Google Scholar 

  2. Yamamoto S, Daiguji H (1993) Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Comput Fluids 22(2–3):259–270

    Article  MathSciNet  MATH  Google Scholar 

  3. Takewaki H, Nishigushi A, Yabe T (1985) Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic type equation. National Institute for Fusion Science NII-Electronic Library Services

  4. Yabe T, Xiao F, Utsumi T (2001) The constrained interpolation profile method for multiphase analysis. J Comput Phys 169(2):556–593

    Article  MathSciNet  MATH  Google Scholar 

  5. Ida M, Yabe T (1995) Implicit CIP (cubic-interpolated propagation) method in one dimension. Comput Phys Commun 92(1):21–26

    Article  MATH  Google Scholar 

  6. Kobayashi S, Suzuki Y, Baba Y (2016) Lightning electromagnetic field calculation using the constrained interpolation profile method with a subgridding technique. IEEE Trans Electromagn Compat 58(5):1682–1685

    Article  Google Scholar 

  7. Kobayashi S, Tanaka Y, Baba Y, Tsuboi T, Okabe S (2017) Computation of lightning electromagnetic pulses using a hybrid constrained interpolation profile and transmission line modeling method. IEEE Trans Electromagn Compat 59(6):1958–1966

    Article  Google Scholar 

  8. Daly E, Grimaldi S, Bui HH et al (2016) Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes. Adv Water Resour 97:156–167

    Article  Google Scholar 

  9. Khayyer A, Gotoh H, Shimizu Y, Gotoh K, Falahaty H, Shao S (2018) Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity. Coast Eng 140:1–22

    Article  Google Scholar 

  10. Pahar G, Dhar A (2016) Mixed miscible-immiscible fluid flow modelling with incompressible SPH framework. Eng Anal Boundary Elem 73:50–60

    Article  MathSciNet  MATH  Google Scholar 

  11. Krimi A, Rezoug M, Khelladi S, Nogueira X, Deligant M, Ramírez L (2018) Smoothed particle hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations. J Comput Phys 358:53–87

    Article  MathSciNet  MATH  Google Scholar 

  12. Mitsume N, Yoshimura S, Murotani K, Yamada T (2014) MPS-FEM partitioned coupling approach for fluid-structure interaction with free surface flow. Int J Comput Methods 11(04):1350101

    Article  MathSciNet  MATH  Google Scholar 

  13. Duan G, Chen B, Zhang X, Wang Y (2017) A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill. Comput Methods Appl Mech Eng 320:133–161

    Article  MathSciNet  MATH  Google Scholar 

  14. Khayyer A, Tsuruta N, Shimizu Y, Gotoh H (2019) Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl Ocean Res 82:397–414

    Article  Google Scholar 

  15. Duan G, Yamaji A, Koshizuka S (2019) A novel multiphase MPS algorithm for modeling crust formation by highly viscous fluid for simulating corium spreading. Nucl Eng Des 343:218–231

    Article  Google Scholar 

  16. Mitsume N, Yamada T, Yoshimura S (2020) Parallel analysis system for free-surface flow using MPS method with explicitly represented polygon wall boundary model. Comput Part Mech 7:279–290

    Article  Google Scholar 

  17. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astronom J 82:1013–1024

    Article  Google Scholar 

  18. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  19. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  Google Scholar 

  20. Souto-Iglesias A, Macià F, González LM, Cercos-Pita JL (2013) On the consistency of MPS. Comput Phys Commun 184(3):732–745

    Article  MathSciNet  MATH  Google Scholar 

  21. Duan G, Koshizuka S, Yamaji A, Chen B, Li X, Tamai T (2018) An accurate and stable multiphase moving particle semi-implicit method based on a corrective matrix for all particle interaction models. Int J Numer Meth Eng 115(10):1287–1314

    Article  MathSciNet  Google Scholar 

  22. Koshizuka S, Shibata K, Kondo M, Matsunaga T (2018) Moving particle semi-implicit method: a meshfree particle method for fluid dynamics. Academic Press, Cambridge

    Google Scholar 

  23. Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann method for incompressible two-phase flows with large density differences. J Comput Phys 198(2):628–644

    Article  MATH  Google Scholar 

  24. Chen Z, Zong Z, Liu M, Zou L, Li H, Shu C (2015) An SPH model for multiphase flows with complex interfaces and large density differences. J Comput Phys 283:169–188

    Article  MathSciNet  MATH  Google Scholar 

  25. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method. Springer, Berlin

    Book  MATH  Google Scholar 

  26. He X, Luo LS (1997) Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811

    Article  Google Scholar 

  27. He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195(2):602–628

    Article  MATH  Google Scholar 

  29. Mattila K, Hyväluoma J, Timonen J, Rossi T (2008) Comparison of implementations of the lattice-Boltzmann method. Comput Math Appl 55(7):1514–1524

    Article  MathSciNet  MATH  Google Scholar 

  30. Sano K, Yamamoto S (2017) FPGA-based scalable and power-efficient fluid simulation using floating-point DSP blocks. IEEE Trans Parallel Distrib Syst 28(10):2823–2837

    Article  Google Scholar 

  31. Shakibaeinia A, Jin YC (2010) A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int J Numer Meth Fluids 63(10):1208–1232

    MathSciNet  MATH  Google Scholar 

  32. Zhang Y, Wan D (2018) MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean Eng 152:416–427

    Article  Google Scholar 

  33. Tang Z, Zhang Y, Wan D (2016) Numerical simulation of 3D free surface flows by overlapping MPS. J Hydrodyn Ser B 28(2):306–312

    Article  Google Scholar 

  34. Mitsume N, Yoshimura S, Murotani K, Yamada T (2014) Improved MPS-FE fluid-structure interaction coupled method with MPS polygon wall boundary model. Comput Model Eng Sci 101(4):229–247

    MathSciNet  MATH  Google Scholar 

  35. Mitsume N, Yoshimura S, Murotani K, Yamada T (2015) Explicitly represented polygon wall boundary model for the explicit MPS method. Comput Part Mech 2(1):73–89

    Article  Google Scholar 

  36. Matsunaga T, Yuhashi N, Shibata K, Koshizuka S (2019) A wall boundary treatment using analytical volume integrations in a particle method. International Journal for Numerical Methods in Engineering, under review

  37. Matsunaga T, Södersten A, Shibata K, Koshizuka S (2020) Improved treatment of wall boundary conditions for a particle method with consistent spatial discretization. Comput Methods Appl Mech Eng 358:112624

    Article  MathSciNet  MATH  Google Scholar 

  38. Li G, Oka Y, Furuya M, Kondo M (2013) Experiments and MPS analysis of stratification behavior of two immiscible fluids. Nucl Eng Des 265:210–221

    Article  Google Scholar 

  39. Xu T, Jin YC (2016) Modeling free-surface flows of granular column collapses using a mesh-free method. Powder Technol 291:20–34

    Article  Google Scholar 

  40. Idelsohn SR, Storti MA, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191(6–7):583–593

    Article  MathSciNet  MATH  Google Scholar 

  41. Akimoto H (2013) Numerical simulation of the flow around a planing body by MPS method. Ocean Eng 64:72–79

    Article  Google Scholar 

  42. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  43. Yildiz M, Rook R, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Meth Eng 77(10):1416–1438

    Article  MathSciNet  MATH  Google Scholar 

  44. Barker DJ, Brito-Parada P, Neethling SJ (2014) Application of B-splines and curved geometries to boundaries in SPH. Int J Numer Meth Fluids 76(1):51–68

    Article  MathSciNet  Google Scholar 

  45. Harada T, Koshizuka S, Shimazaki K (2008) Improvement of wall boundary calculation model for MPS method. Trans Japan Soc Comput Eng Sci 2008:1–7

    Google Scholar 

  46. Yamada Y, Sakai M, Mizutani S, Koshizuka S, Oochi M, Murozono K (2011) Numerical simulation of three-dimensional free-surface flows with explicit moving particle simulation method. Trans Atom Energy Soc Japan 10(3):185–193

    Article  Google Scholar 

  47. Tamai T, Koshizuka S (2014) Least squares moving particle semi-implicit method. Comput Part Mech 1(3):277–305

    Article  Google Scholar 

  48. Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147

    Article  Google Scholar 

  49. Li Z, Leduc J, Combescure A, Leboeuf F (2014) Coupling of SPH-ALE method and finite element method for transient fluid-structure interaction. Comput Fluids 103:6–17

    Article  MathSciNet  MATH  Google Scholar 

  50. Thiyahuddin M, Gu Y, Gover R, Thambiratnam D (2014) Fluid-structure interaction analysis of full scale vehicle-barrier impact using coupled SPH-FEA. Eng Anal Bound Elem 42:26–36

    Article  MathSciNet  MATH  Google Scholar 

  51. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234

    Article  MathSciNet  MATH  Google Scholar 

  52. Rao C, Zhang Y, Wan D (2017) Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method. J Mar Sci Appl 16(4):395–404

    Article  Google Scholar 

  53. Liu GR, Quek SS (2013) The finite element method: a practical course. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  54. Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78(2):141–163

    Article  MathSciNet  MATH  Google Scholar 

  55. Sanchez-Mondragon J (2016) On the stabilization of unphysical pressure oscillations in MPS method simulations. Int J Numer Meth Fluids 82(8):471–492

    Article  MathSciNet  Google Scholar 

  56. Zhang T, Koshizuka S, Xuan P, Li J, Gong C (2019) Enhancement of stabilization of MPS to arbitrary geometries with a generic wall boundary condition. Comput Fluids 178:88–112

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang T, Koshizuka S, Murotani K, Shibata K, Ishii E (2017) Improvement of pressure distribution to arbitrary geometry with boundary condition represented by polygons in particle method. Int J Numer Meth Eng 112(7):685–710

    Article  MathSciNet  Google Scholar 

  58. Koshizuka S (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J 4(1):29–46

    Google Scholar 

  59. Martin JC, Moyce WJ, Martin J, Moyce W, Penney WG, Price A, Thornhill C (1952) Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Trans R Soc Lond Ser A Mathe Phys Sci 244(882):312–324

    MATH  Google Scholar 

  60. Zhang T, Koshizuka S, Murotani K, Shibata K, Ishii E, Ishikawa M (2016) Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique. Int J Comput Fluid Dyn 30(2):155–175

    Article  MathSciNet  Google Scholar 

  61. Idelsohn SR, Oñate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Meth Eng 61(7):964–989

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP18F18702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Duan, G., Mitsume, N. et al. A novel ghost cell boundary model for the explicit moving particle simulation method in two dimensions. Comput Mech 66, 87–102 (2020). https://doi.org/10.1007/s00466-020-01842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01842-0

Keywords

Navigation