Skip to main content

Variational multiscale framework for cavitating flows

Abstract

A numerical formulation for the modeling of turbulent cavitating flows is presented. The flow field is governed by the 3D, time-dependent Navier–Stokes equations for a compressible isothermal mixture. The Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) formulation is adopted to model the turbulent flow on moving domains with no-slip boundary conditions imposed weakly. The formulation is first tested on the cavitating flow over a 2D NACA0012 airfoil and compared to published numerical results. Next, the framework is applied to the benchmark problem for the flow over a hemispherical fore-body. The numerical results are compared to the reported experimental data, showing a good agreement over the range of cavitation numbers. Finally, the simulation of a hydrokinetic turbine in cavitating flow at a low cavitation number is presented in order to test the stability of the formulation and the capability to handle real engineering problems involving turbulent cavitating flows on moving domains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9

    MATH  Article  Google Scholar 

  2. Akins RE (1989) Measurements of surface pressures on an operating vertical-axis wind turbine. Sandia National Laboratories, SAND89-7051, Albuquerque, NM

  3. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905

    Article  Google Scholar 

  4. Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Article  Google Scholar 

  5. Alfonsi G (2009) Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl Mech Rev 62(4):040802

    Article  Google Scholar 

  6. Aliabadi S, Tu S, Watts M (2005) Simulation of hydrodynamic cavitating flows using stabilized finite element method. In: 43rd AIAA aerospace sciences meeting and exhibit, p 1288

  7. Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090

    MATH  Article  Google Scholar 

  8. Bahaj A, Molland A, Chaplin J, Batten W (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32(3):407–426

    Article  Google Scholar 

  9. Bayram A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432

    MathSciNet  MATH  Article  Google Scholar 

  10. Bazilevs Y, Calo V, Cottrell J, Hughes T, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    MathSciNet  MATH  Article  Google Scholar 

  11. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    MathSciNet  MATH  Article  Google Scholar 

  12. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    MathSciNet  MATH  Article  Google Scholar 

  13. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    MathSciNet  MATH  Article  Google Scholar 

  14. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011a) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235

    MATH  Article  Google Scholar 

  15. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    MathSciNet  MATH  Article  Google Scholar 

  16. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    MATH  Article  Google Scholar 

  17. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  MATH  Article  Google Scholar 

  18. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010a) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  19. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010b) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    MathSciNet  MATH  Article  Google Scholar 

  20. Bazilevs Y, Hughes T (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43(1):143–150

    MATH  Article  Google Scholar 

  21. Bazilevs Y, Korobenko A, Deng X, Yan J (2015a) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783

    MATH  Article  Google Scholar 

  22. Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Article  Google Scholar 

  23. Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014a) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006

    Article  Google Scholar 

  24. Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015b) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375

    MathSciNet  MATH  Article  Google Scholar 

  25. Bazilevs Y, Michler C, Calo V, Hughes T (2007b) Weak dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862

    MathSciNet  MATH  Article  Google Scholar 

  26. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, Hoboken

    MATH  Book  Google Scholar 

  27. Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014b) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398

    MathSciNet  MATH  Article  Google Scholar 

  28. Bensow RE (2011) Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES. In: Second international symposium on marine propulsors, Hamburg, Germany

  29. Brennen CE (2014) Cavitation and bubble dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):078001

    Article  Google Scholar 

  31. Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375

    MathSciNet  MATH  Article  Google Scholar 

  32. Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45

    Article  Google Scholar 

  33. Delannoy Y (1990) Two phase flow approach in unsteady cavitation modelling. In: Proceedings of cavitation and multiphase flow forum, 1990

  34. Delannoy Y, Kueny J (1990) Cavity flow predictions based on the euler equations. ASME Cavitation Multi-Phase Flow Forum 109:153–158

    Google Scholar 

  35. Frikha S, Coutier-Delgosha O, Astolfi JA (2008) Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. Int J Rotating Mach 2008:146234

    Article  Google Scholar 

  36. Gaggero S, Tani G, Viviani M, Conti F (2014) A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng 92:137–161

    Article  Google Scholar 

  37. Goncalves E, Decaix J, Patella RF (2010) Unsteady simulation of cavitating flows in venturi. J Hydrodyn Ser B 22(5):753–758

    Google Scholar 

  38. Gopalan S, Katz J (2000) Flow structure and modeling issues in the closure region of attached cavitation. Phys Fluids 12(4):895–911

    MATH  Article  Google Scholar 

  39. Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Methods Eng 13(2):249

    MathSciNet  MATH  Article  Google Scholar 

  40. Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329

    Article  Google Scholar 

  41. Guilmineau E, Deng G, Leroyer A, Queutey P, Visonneau M, Wackers J (2015) Influence of the turbulence closures for the wake prediction of a marine propeller. In: Proceedings of the 4th international symposium on marine propulsors, SMP’15, Austin, TX, USA, 31 May–4 June, 2015

  42. Helgedagsrud T, Bazilevs Y, Mathisen K, Oiseth O (2018a) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online

  43. Helgedagsrud TA, Bazilevs Y, Korobenko A, Mathisen KM, Oiseth OA (2018b) Using ALE-VMS to compute aerodynamic derivatives of bridge sections. Comput Fluids. Published online

  44. Helgedagsrud TA, Bazilevs Y, Mathisen KM, Oiseth OA (2018c) Computational and experimental investigation of free vibration and flutter of bridge decks. Comput Mech. Published online

  45. Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100

    MathSciNet  MATH  Article  Google Scholar 

  46. Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment. Wind Energy 17:461–481

    Article  Google Scholar 

  47. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599

    MathSciNet  Article  Google Scholar 

  48. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJ (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840

    MathSciNet  MATH  Article  Google Scholar 

  49. Hsu M-C, Kamensky D (2018) Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian method. In: Frontiers in computational fluid–structure interaction and flow simulation. Springer International Publishing, Cham, pp 167–212

    Chapter  Google Scholar 

  50. Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014b) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071

    MathSciNet  MATH  Article  Google Scholar 

  51. Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225

    MATH  Article  Google Scholar 

  52. Hughes TJ, Franca LP, Balestra M (1986a) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99

    MATH  Article  Google Scholar 

  53. Hughes TJ, Mallet M, Akira M (1986b) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355

    MathSciNet  MATH  Article  Google Scholar 

  54. Hughes TJ, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59

    MATH  Article  Google Scholar 

  55. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319

    MathSciNet  MATH  Article  Google Scholar 

  56. Kamensky D, Evans JA, Hsu M-C, Bazilevs Y (2017) Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Comput Math Appl 74(9):2068–2088

    MathSciNet  MATH  Article  Google Scholar 

  57. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    MathSciNet  MATH  Article  Google Scholar 

  58. Kamensky D, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546

    MathSciNet  MATH  Article  Google Scholar 

  59. Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019a) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870

    MathSciNet  MATH  Article  Google Scholar 

  60. Kanai T, Takizawa K, Tezduyar TE, Tanaka T, Hartmann A (2019b) Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization. Comput Mech 63:301–321

    MathSciNet  MATH  Article  Google Scholar 

  61. Kawakami E, Arndt RE (2011) Investigation of the behavior of ventilated supercavities. J Fluids Eng 133(9):091305

    Article  Google Scholar 

  62. Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol. 240, p 062014

  63. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and Simulation in Science, Engineering and Technology. Springer, pp 253–336

  64. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2019) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26:1059–1099

    MathSciNet  Article  Google Scholar 

  65. Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013a) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011

    Article  Google Scholar 

  66. Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MathSciNet  MATH  Article  Google Scholar 

  67. Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175

    MathSciNet  MATH  Article  Google Scholar 

  68. Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96

    Article  Google Scholar 

  69. Kunz RF, Boger DA, Chyczewski TS, Stinebring D, Gibeling H, Govindan T (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: 3rd ASME/JSME joint fluids engineering conference, San Francisco. Vol. 1. p 1

  70. Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan T (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875

    MATH  Article  Google Scholar 

  71. Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 337–376

  72. Kuraishi T, Takizawa K, Tezduyar TE (2019a) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64:1699–1718

    MATH  Article  Google Scholar 

  73. Kuraishi T, Takizawa K, Tezduyar TE (2019b) Space-time Isogeometric flow analysis with built-in Reynolds-equation limit. Math Models Methods Appl Sci 29:871–904

    MathSciNet  MATH  Article  Google Scholar 

  74. Kuraishi T, Takizawa K, Tezduyar TE (2019c) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185

    MathSciNet  MATH  Article  Google Scholar 

  75. Lee C-H, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu M-C, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y (2019) Mechanics of the tricuspid valve—from clinical diagnosis/treatment, in-vivo and in-vitro investigations, to patient-specific biomechanical modeling. Bioengineering 6(2):47

    Article  Google Scholar 

  76. Li Q, Maeda T, Kamada Y, Murata J, Furukawa K, Yamamoto M (2015) Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine. Energy 90:784–795

    Article  Google Scholar 

  77. Li Q, Maeda T, Kamada Y, Murata J, Kawabata T, Furukawa K (2014) Analysis of aerodynamic load on straight-bladed vertical axis wind turbine. J Therm Sci 23(4):315–324

    Article  Google Scholar 

  78. Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014a) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919

    MathSciNet  MATH  Article  Google Scholar 

  79. Long CC, Marsden AL, Bazilevs Y (2013) Fluid-structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981

    MATH  Article  Google Scholar 

  80. Long CC, Marsden AL, Bazilevs Y (2014b) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932

    MathSciNet  MATH  Article  Google Scholar 

  81. Lu N-X, Bensow RE, Bark G (2010) LES of unsteady cavitation on the delft twisted foil. J Hydrodyn 22(1):742–749

    Article  Google Scholar 

  82. Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998

  83. New Energy Corporation, Inc., 2019. www.newenergycorp.ca

  84. Niedźwiedzka A, Schnerr GH, Sobieski W (2016) Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch Thermodyn 37(2):71–88

    Article  Google Scholar 

  85. Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200

    MathSciNet  MATH  Article  Google Scholar 

  86. Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 399–434

  87. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019a) Space-time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64:1403–1419

    MathSciNet  MATH  Article  Google Scholar 

  88. Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019b) Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776

    MathSciNet  MATH  Article  Google Scholar 

  89. Owis F, Nayfeh A (2001) Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th Aerospace sciences meeting and exhibit, p 1042

  90. Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech B/Fluids 23(2):339–351

    MATH  Article  Google Scholar 

  91. Pendar M-R, Roohi E (2018) Cavitation characteristics around a sphere: an LES investigation. Int J Multiph Flow 98:1–23

    MathSciNet  Article  Google Scholar 

  92. Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185

    MATH  Article  Google Scholar 

  93. Ravensbergen M, Bayram A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465

    MathSciNet  MATH  Article  Google Scholar 

  94. Rayleigh L (1917) Viii. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98

    MATH  Article  Google Scholar 

  95. Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, Vol. 26

  96. Roohi E, Zahiri AP, Passandideh-Fard M (2013) Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Appl Math Model 37(9):6469–6488

    MathSciNet  Article  Google Scholar 

  97. Rouse H, McNown JS (1948) Cavitation and pressure distribution: head forms at zero angle of yaw. University of Iowa Studies in Engineering, 32. State University of Iowa

  98. Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM, Philadelphia

    MATH  Book  Google Scholar 

  99. Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, Vol. 1. ICMF New Orleans

  100. Senocak I, Shyy W (2001) Numerical simulation of turbulent flows with sheet cavitation. In: CAV 2001: 4th international symposium on cavitation, June 20–23, 2001. California Institute of Technology, Pasadena, CA, USA. http://caltechconf.library.caltech.edu/47/1/Cav2001.pdf

  101. Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624

    Article  Google Scholar 

  102. Sipila T, Sanchez-Caja A, Siikonen T (2014) Eddy vorticity in cavitating tip vortices modelled by different turbulence models using the RANS approach. In: 11th World congress on computational mechanics (WCCM XI), pp 4741–4752

  103. Song C (1998) Numerical simulation of cavitating flows by a single-phase flow approach. In: Third international symposium on cavitation, Grenoble, France, 1998

  104. Sreedhar B, Albert S, Pandit A (2017) Cavitation damage: theory and measurements—a review. Wear 372:177–196

    Article  Google Scholar 

  105. Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045

    MATH  Article  Google Scholar 

  106. Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 379–386

  107. Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211

    MathSciNet  Article  Google Scholar 

  108. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019a) Computational cardiovascular flow analysis with the variational multiscale methods. J Adv Eng Comput 3:366–405

    Article  Google Scholar 

  109. Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014a) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508

    MathSciNet  MATH  Article  Google Scholar 

  110. Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014b) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486

    MathSciNet  MATH  Article  Google Scholar 

  111. Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012a) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854

    Article  Google Scholar 

  112. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012b) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760

    MATH  Article  Google Scholar 

  113. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013a) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134

    MathSciNet  MATH  Article  Google Scholar 

  114. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012c) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903

    MATH  Article  Google Scholar 

  115. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012d) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778

    MATH  Article  Google Scholar 

  116. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013b) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338

    MathSciNet  MATH  Article  Google Scholar 

  117. Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013c) Space-time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248

    MathSciNet  MATH  Article  Google Scholar 

  118. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012e) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686

    MathSciNet  MATH  Article  Google Scholar 

  119. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013d) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073

    MathSciNet  MATH  Article  Google Scholar 

  120. Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech 48:247–267

    MathSciNet  MATH  Article  Google Scholar 

  121. Takizawa K, Tezduyar TE (2012a) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169

    MathSciNet  MATH  Article  Google Scholar 

  122. Takizawa K, Tezduyar TE (2012b) Space-time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001

    MathSciNet  MATH  Article  Google Scholar 

  123. Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid–structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, pp 159–178

  124. Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016a) Space-time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134

    MathSciNet  MATH  Article  Google Scholar 

  125. Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013e) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364

    MATH  Article  Google Scholar 

  126. Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014c) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220

    Article  Google Scholar 

  127. Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015a) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069

    Article  Google Scholar 

  128. Takizawa K, Tezduyar TE, Buscher A (2015b) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141

    Article  Google Scholar 

  129. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014d) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986

    MATH  Article  Google Scholar 

  130. Takizawa K, Tezduyar TE, Buscher A, Asada S (2014e) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971

    MathSciNet  MATH  Article  Google Scholar 

  131. Takizawa K, Tezduyar TE, Hattori H (2017a) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117

    MathSciNet  MATH  Article  Google Scholar 

  132. Takizawa K, Tezduyar TE, Kanai T (2017b) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806

    MathSciNet  MATH  Article  Google Scholar 

  133. Takizawa K, Tezduyar TE, Kolesar R (2015c) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179

    MATH  Article  Google Scholar 

  134. Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014f) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476

    MathSciNet  MATH  Article  Google Scholar 

  135. Takizawa K, Tezduyar TE, Kostov N (2014g) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233

    MathSciNet  Article  Google Scholar 

  136. Takizawa K, Tezduyar TE, Kuraishi T (2015d) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255

    MathSciNet  MATH  Article  Google Scholar 

  137. Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016b) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977

    MathSciNet  MATH  Article  Google Scholar 

  138. Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014h) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15

    MATH  Article  Google Scholar 

  139. Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015e) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406

    MathSciNet  MATH  Article  Google Scholar 

  140. Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017c) Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20

    MathSciNet  MATH  Article  Google Scholar 

  141. Takizawa K, Tezduyar TE, Terahara T (2016c) Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200

    MathSciNet  MATH  Article  Google Scholar 

  142. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017d) Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188

    MathSciNet  MATH  Article  Google Scholar 

  143. Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture Notes in Applied and Computational Mechanics. Springer, pp 77–99

  144. Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, pp 29–89

  145. Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Yoshida A (2019b) Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization. Comput Fluids 179:790–798

    MathSciNet  MATH  Article  Google Scholar 

  146. Tezduyar T, Park Y (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325

    MATH  Article  Google Scholar 

  147. Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88

    MathSciNet  MATH  Google Scholar 

  148. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    MathSciNet  MATH  Google Scholar 

  149. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    MathSciNet  MATH  Article  Google Scholar 

  150. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput fluids 36(2):191–206

    MathSciNet  MATH  Article  Google Scholar 

  151. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190(3–4):411–430

    MATH  Article  Google Scholar 

  152. Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209

    MathSciNet  MATH  Article  Google Scholar 

  153. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    MATH  Article  Google Scholar 

  154. Tezduyar TE, Takizawa K (2019) Space-time computations in practical engineering applications: a summary of the 25-year history. Comput Mech 63:747–753

    MATH  Article  Google Scholar 

  155. Thompson KW (1987) Time dependent boundary conditions for hyperbolic systems. J Comput Phys 68(1):1–24

    MathSciNet  MATH  Article  Google Scholar 

  156. Thompson KW (1990) Time-dependent boundary conditions for hyperbolic systems, II. J Comput Phys 89(2):439–461

    MathSciNet  MATH  Article  Google Scholar 

  157. Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer JL, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the e779a propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (smp’15), Austin, TX, USA, pp 330–345

  158. Viitanen V, Hynninen A, Sipilä T, Siikonen T (2018) DDES of wetted and cavitating marine propeller for CHA underwater noise assessment. J Mar Sci Eng 6(2):56

    Article  Google Scholar 

  159. Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer, Berlin

  160. Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14

    MathSciNet  MATH  Article  Google Scholar 

  161. Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng 316:668–693

    MathSciNet  MATH  Article  Google Scholar 

  162. Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C (2019) Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Comput Methods Appl Mech Eng 357:112556

    MathSciNet  MATH  Article  Google Scholar 

  163. Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C (2018) An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. J Biomech 74:23–31

    Article  Google Scholar 

  164. Xu F, Bazilevs Y, Hsu M-C (2019a) Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Math Models Methods Appl Sci 29(05):905–938

    MathSciNet  MATH  Article  Google Scholar 

  165. Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C (2018) A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng 34(4):e2938

    MathSciNet  Article  Google Scholar 

  166. Xu S, Gao B, Hsu M-C, Ganapathysubramanian B (2019b) A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flows. Comput Methods Appl Mech Eng 352:345–368

    MathSciNet  MATH  Article  Google Scholar 

  167. Xu S, Liu N, Yan J (2019c) Residual-based variational multi-scale modeling for particle-laden gravity currents over flat and triangular wavy terrains. Comput Fluids 188:114–124

    MathSciNet  MATH  Article  Google Scholar 

  168. Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B (2019d) Immersogeometric analysis of moving objects in incompressible flows. Comput Fluids 189:24–33

    MathSciNet  MATH  Article  Google Scholar 

  169. Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016a) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211

    MathSciNet  MATH  Article  Google Scholar 

  170. Yan J, Deng X, Korobenko A, Bazilevs Y (2017a) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166

    MathSciNet  MATH  Article  Google Scholar 

  171. Yan J, Korobenko A, Deng X, Bazilevs Y (2016b) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174

    MathSciNet  MATH  Article  Google Scholar 

  172. Yan J, Korobenko A, Tejada-Martinez A, Golshan R, Bazilevs Y (2017b) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156

    MathSciNet  MATH  Article  Google Scholar 

  173. Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34

    MATH  Article  Google Scholar 

  174. Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150

    Article  Google Scholar 

  175. Yu Y, Zhang YJ, Takizawa K, Tezduyar TE, Sasaki T (2019) Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. Comput Mech 65:395–404

    MathSciNet  Article  Google Scholar 

  176. Zakerzadeh R, Hsu M-C, Sacks MS (2017) Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices 14(11):849–866

    Article  Google Scholar 

  177. Zhu Q, Yan J (2019) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl. Accepted for publication

  178. Zwart PJ, Gerber AG, Belamri T et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, Vol. 152

Download references

Acknowledgements

A. Bayram was partially supported by NSERC Engage Grant and Campus Alberta Small Business Engagement (CASBE) Program from Alberta Innovates, EGP-530738-18. A. Korobenko was partially supported by NSERC Discovery Grant, RGPIN-2017-03781. We thank Compute Canada and Advanced Research Computing (ARC) at the University of Calgary for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korobenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayram, A., Korobenko, A. Variational multiscale framework for cavitating flows. Comput Mech 66, 49–67 (2020). https://doi.org/10.1007/s00466-020-01840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01840-2

Keywords

  • Cavitation
  • Navier–Stokes
  • Finite elements
  • ALE-VMS
  • Sliding interface
  • Hydrokinetic turbines