Skip to main content
Log in

A dual scaled boundary finite element formulation over arbitrary faceted star convex polyhedra

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel technique to formulate arbritrary faceted polyhedral elements in three-dimensions is presented. The formulation is applicable for arbitrary faceted polyhedra, provided that a scaling requirement is satisfied and the polyhedron facets are planar. A triangulation process can be applied to non-planar facets to generate an admissible geometry. The formulation adopts two separate scaled boundary coordinate systems with respect to: (i) a scaling centre located within a polyhedron and; (ii) a scaling centre on a polyhedron’s facets. The polyhedron geometry is scaled with respect to both the scaling centres. Polygonal shape functions are derived using the scaled boundary finite element method on the polyhedron facets. The stiffness matrix of a polyhedron is obtained semi-analytically. Numerical integration is required only for the line elements that discretise the polyhedron boundaries. The new formulation passes the patch test. Application of the new formulation in computational solid mechanics is demonstrated using a few numerical benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aldakheel F, Hudobivnik B, Wriggers P (2019a) A low order 3D virtual element formulation for finite elasto-plastic deformations. Comput Mech 63:253–269

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldakheel F, Hudobivnik B, Wriggers P (2019b) Virtual elements for the finite thermo-plasticity problems. Comput Mech 64:1347–1360

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri SN, Zhu T (1998) A new Meshless Local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  4. Babûska I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer 12:1–125

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko T, Gu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  7. Bishop JE (2014) A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97:1–31

    Article  MathSciNet  MATH  Google Scholar 

  8. Bower AF (2009) Appl Mech Solids. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Brezzi F, Lipnikov K, Simoncini V (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math Models Methods Appl Sci 15(10):1533–1551

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi F, Lipnikov K, Shashkov M, Simoncini V (2007) A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput Methods Appl Mech Eng 196:3682–3692

    Article  MathSciNet  MATH  Google Scholar 

  11. Cangiani A, Dong Z, Georgoulis EH, Houston P (2017) hp-version discontinuous galerkin methods on polygonal and polyhedral meshes. Springer, Cham

    Book  MATH  Google Scholar 

  12. Cardiff P, Tuković Ž, Jasak H, Ivanković A (2016) A block-coupled Finite Volume methodmethod for linear elasticity and unstructured meshes. Comput Struct 175:100–122

    Article  Google Scholar 

  13. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  14. Chi H, ao da Veiga LB, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192

    Article  MathSciNet  MATH  Google Scholar 

  15. da Veiga LB, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214

    Article  MathSciNet  MATH  Google Scholar 

  16. da Veiga LB, Dassi F, Russo A (2017) High-order virtual element method on polyhedral meshes. Comput Math Appl 74:1110–1122

    Article  MathSciNet  MATH  Google Scholar 

  17. Dimitrov A, Andra H, Schnack E (2001) Efficient computation of order and mode of corner singularities in 3D-elasticity. Int J Numer Methods Eng 52:805–827

    Article  MATH  Google Scholar 

  18. Dvorak P (2006) New element lops time off CFD simulations. Mach Des 78:154–155

    Google Scholar 

  19. Floater M (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27

    Article  MathSciNet  MATH  Google Scholar 

  20. Francis A, Ortiz-Bernardin A, Bordas SPA, Natarajan S (2017) Linear smoothed polygonal and polyhedral finite elements. Int J Numer Methods Eng 109:1263–1288

    Article  MathSciNet  Google Scholar 

  21. Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh S, Moorthy S (2004) Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneities. Comput Mech 34:510–531

    Article  MATH  Google Scholar 

  23. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  24. Goswami S, Becker W (2012) Computation of 3-D stress singularities for multiple ccrack and crack intersections by the scaled boundary finite element method. Comput Mech 175:13–25

    Google Scholar 

  25. Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107(7):603–630

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang Y, Yang Z, Ren W, Liu G, Zhang C (2015) 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model. Int J Solids Struct 67–68:340–352

    Article  Google Scholar 

  27. Joshi P, Meyer M, Rose T. De, Green B, Sanocki T (2007) Harmonic coordinates for character articulation. ACM Trans Graph 26(3), 71

    Article  Google Scholar 

  28. Kraus M, Steinmann P (2012) Finite element fformulation for 3D convex polyhedra in nonlinear continuum mechanics. Comput Assist Methods Eng Sci 19:121–134

    MathSciNet  Google Scholar 

  29. Lee C, Kim H, Im S (2016) Polyhedral elements by means of node/edge-based smoothed finite element method. Int J Numer Methods Eng 110:1069–1100. https://doi.org/10.1002/nme.5449

    Article  MathSciNet  Google Scholar 

  30. Liszka TJ, Duarte CAM, Tworzydlo WW (1996) hp-Meshless cloud method. Comput Methods Appl Mech Eng 139:263–288

    Article  MATH  Google Scholar 

  31. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50:937–951

    Article  MATH  Google Scholar 

  32. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71:902–930

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu Y, Saputra AA, Wang J, Tin-Loi F, Song C (2017) Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL model. Comput Methods Appl Mech Eng 313:106–132

    Article  MathSciNet  MATH  Google Scholar 

  35. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  36. Meyer M, Lee H, Barr A, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22

    Article  MATH  Google Scholar 

  37. Natarajan S, Bordas SPA, Ooi ET (2015) Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. Int J Numer Methods Eng 104:1173–1199

    Article  MathSciNet  MATH  Google Scholar 

  38. Natarajan S, Ooi ET, Saputra A, Song C (2017) A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Eng Anal Bound Elem 80:218–229

    Article  MathSciNet  MATH  Google Scholar 

  39. Oliveira T, Portela A (2016) Weak-form collocation—a local meshless method in linear elasticity. Eng Anal Bound Elem 73:144–160

    Article  MathSciNet  MATH  Google Scholar 

  40. Ooi ET, Song C, Tin-Loi F, Yang ZJ (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91(3):319–342

    Article  MathSciNet  MATH  Google Scholar 

  41. Ooi ET, Song C, Natarajan S (2018) A scaled boundary finite element method for poroelasticity. Int J Numer Methods Eng 114:905–929

    Article  Google Scholar 

  42. Perumal L, Fadel MI (2014) New polyhedral elements based on virtual node method for solid mechanics and heat transfer applications. Appl Mech Mater 493:367–371

    Article  Google Scholar 

  43. Rajendran S, Ooi ET, Yeo JH (2007) Mesh-distortion immunity assessment of QUAD8 elements by strong-form patch tests. Commun Numer Methods Eng 23:157–168

    Article  MathSciNet  MATH  Google Scholar 

  44. Rashid MM, Selimotic M (2006) A three-dimensional finite element method with arbitrary polyhedral elements. Int J Numer Methods Eng 67:226–252

    Article  MathSciNet  MATH  Google Scholar 

  45. Rjasanow S, Weiber S (2014) FEM with Trefftz trial functions on polyhedral elements. J Comput Appl Math 263:202–217

    Article  MathSciNet  MATH  Google Scholar 

  46. Rodrigues EA, Manzoli OL Jr, Bitencourt LAG, Bittencourt TN (2016) 2D mesoscale concrete model for concrete based on the use of interface element with high aspect ratio. Int J Solids Struct 94–95:112–124

    Article  Google Scholar 

  47. Saputra A, Talebi H, Tran D, Birk C, Song C (2017) Automatic image-based stress analysis by the scaled boundary finite element method. Int J Numer Methods Eng 109(5):697–738

    Article  MathSciNet  Google Scholar 

  48. Song C (2004) A matrix function solution for the scaled boundary finite-element equation in statics. Comput Methods Appl Mech Eng 193(23–26):2325–2356

    Article  MathSciNet  MATH  Google Scholar 

  49. Song C, Wolf JP (1997) The scaled boundary finite element method—alias consistent infinitesimal finite element cell method for elastodynamics. Comput Methods Appl Mech Eng 147:329–355

    Article  MathSciNet  MATH  Google Scholar 

  50. Song C, Wolf JP (1999) Body loads in scaled boundary finite-element method. Comput Methods Appl Mech Eng 180(1–2):117–135

    Article  MATH  Google Scholar 

  51. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066

    Article  MathSciNet  MATH  Google Scholar 

  52. Talebi H, Saputra A, Song C (2016) Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements. Comput Mech 58(4):697–715

    Article  MathSciNet  MATH  Google Scholar 

  53. Wachspress E (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  54. Wang XF, Yang ZJ, Yates JR, Jivkov AP, Zhang C (2015) Monte carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Constr Build Mater 75:35–45

    Article  Google Scholar 

  55. Wicke M, Botsch M, Gross M, Zurich ETH (2007) A finite element method on convex polyhedra. EuroGraphics 6(3):355–364

    Google Scholar 

  56. Wolf JP, Song C (2000) The scaled boundary finite-element method: a primer—derivations. Comput Struct 78(1–3):191–210

    Article  Google Scholar 

  57. Wu CKC, Plesha ME (2002) Essential boundary condition enforcement in meshless methods: boundary flux collocation method. Int J Numer Methods Eng 53:499–514

    Article  MATH  Google Scholar 

  58. Zou D, Chen K, Kong X, Liu J (2017) An enhanced octree polyhedral scaled boundary finite element method and its aapplication in structure analysis. Eng Anal Bound Elem 84:87–107

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Ooi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, E.T., Saputra, A., Natarajan, S. et al. A dual scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Comput Mech 66, 27–47 (2020). https://doi.org/10.1007/s00466-020-01839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01839-9

Keywords

Navigation