Skip to main content
Log in

Geometrically nonlinear analysis of solids using an isogeometric formulation in boundary representation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a geometrically nonlinear formulation in boundary representation for the isogeometric analysis of solids. The proposed formulation employs the parameterization of the scaled boundary finite element method. Thus, the geometry of the boundary is sufficient to describe the entire domain. In contrast to the scaled boundary finite element method, NURBS basis functions approximate the solution on the boundary and also in the interior of the domain. In this way, the exact geometry of the boundary is preserved and geometrically nonlinear problems are treated without further measures. The formulation is derived for two-dimensional domains with arbitrary number of boundaries. Numerical benchmarks evaluate the accuracy and efficiency of the formulation. Furthermore, the influence of the discretization in the interior of the domain and the performance of complex geometries is studied. The proposed formulation compares well with other numerical methods and is suitable for geometries that are designed in boundary representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  2. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, West Sussex

    MATH  Google Scholar 

  3. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313

    MathSciNet  MATH  Google Scholar 

  4. Cottrell JA, Reali A, Bazilevs Y (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    MathSciNet  MATH  Google Scholar 

  5. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196(4160–4183):41–44

    MATH  Google Scholar 

  6. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS. Comput Methods Appl Mech Eng 197:4104–4124

    MathSciNet  MATH  Google Scholar 

  7. Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger KU (2015) Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457

    MathSciNet  MATH  Google Scholar 

  8. Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the \(p\)- and B-spline versions of the Finite Cell Method. Comput Mech 50:445–478

    MathSciNet  MATH  Google Scholar 

  9. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249:104–115

    MATH  Google Scholar 

  10. Heltai L, Kiendl J, DeSimone A, Reali A (2005) A natural framework for isogeometric fluid–structure interaction based on BEM-shell coupling. Comput Methods Appl Mech Eng 194:4135–4195

    Google Scholar 

  11. Bazilevs Y, Hsu MC, Zhang Y, Wang W, Kvamsdal T, Hentschel S et al (2010) Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms. Biomech Model Mechanobiol 9(4):481–498

    Google Scholar 

  12. Stroud I (2006) Boundary representation modelling techniques. Springer, London

    MATH  Google Scholar 

  13. Song C, Wolf JP (1996) Consistent infinitesimal finite-element cell method: three-dimensional vector wave equation. Int J Numer Methods Eng 39(13):2189–2208

    MATH  Google Scholar 

  14. Song C, Wolf JP (1997) The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Comput Methods Appl Mech Eng 147:329–355

    MathSciNet  MATH  Google Scholar 

  15. Song C, Wolf JP (2000) The scaled boundary finite-element method—a primer: solution procedures. Comput Struct 78(1):211–225

    Google Scholar 

  16. Song C (2018) The scaled boundary finite element method: introduction to theory and implementation. Wiley, West Sussex

    Google Scholar 

  17. Natarajan S, Ooi ET, Chiong I, Song C (2014) Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem Anal Des 85:101–122

    MathSciNet  Google Scholar 

  18. Deeks AJ, Augarde CE (2005) A meshless local Petrov–Galerkin scaled boundary method. Comput Mech 36(3):159–170

    MathSciNet  MATH  Google Scholar 

  19. He Y, Yang H, Deeks AJ (2012) An Element-free Galerkin (EFG) scaled boundary method. Finite Elem Anal Des 62:28–36

    MathSciNet  Google Scholar 

  20. Song C, Wolf JP (1998) The scaled boundary finite-element method: analytical solution in frequency domain. Comput Methods Appl Mech Eng 164(1):249–264

    MathSciNet  MATH  Google Scholar 

  21. Song C (2004) A matrix function solution for the scaled boundary finite-element equation in statics. Comput Methods Appl Mech Eng 193(23):2325–2356

    MathSciNet  MATH  Google Scholar 

  22. Lin G, Zhang Y, Hu Z, Zhong H (2014) Scaled boundary isogeometric analysis for 2D elastostatics. Sci China Phys Mech Astron 57(2):286–300

    Google Scholar 

  23. Natarajan S, Wang JC, Song C, Birk C (2015) Isogeometric analysis enhanced by the scaled boundary finite element method. Comput Methods Appl Mech Eng 283:733–762

    MathSciNet  MATH  Google Scholar 

  24. Klinkel S, Chen L, Dornisch W (2015) A NURBS based hybrid collocation—Galerkin method for the analysis of boundary represented solids. Comput Methods Appl Mech Eng 284:689–711

    MathSciNet  MATH  Google Scholar 

  25. Gravenkamp H, Natarajan S, Dornisch W (2017) On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems. Comput Methods Appl Mech Eng 315:867–880

    MathSciNet  Google Scholar 

  26. Vu TH, Deeks AJ (2006) Use of higher-order shape functions in the scaled boundary finite element method. Int J Numer Methods Eng 65(10):1714–1733

    MathSciNet  MATH  Google Scholar 

  27. Ooi ET, Song C, Natarajan S (2016) Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions. Int J Numer Methods Eng 108(9):1086–1120

    MathSciNet  Google Scholar 

  28. He Y, Yang H, Deeks AJ (2014) Use of Fourier shape functions in the scaled boundary method. Eng Anal Bound Elem 41:152–159

    MathSciNet  MATH  Google Scholar 

  29. Lin Z, Liao S (2011) The scaled boundary FEM for nonlinear problems. Commun Nonlinear Sci Numer Simul 16(1):63–75

    MathSciNet  MATH  Google Scholar 

  30. Ooi E, Song C, Tin-Loi F (2014) A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng 268:905–937

    MathSciNet  MATH  Google Scholar 

  31. Behnke R, Mundil M, Birk C, Kaliske M (2014) A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. Int J Numer Methods Eng 99:966–999

    MathSciNet  MATH  Google Scholar 

  32. Chasapi M, Klinkel S (2018) A scaled boundary isogeometric formulation for the elasto-plastic analysis of solids in boundary representation. Comput Methods Appl Mech Eng 18:475–496

    MathSciNet  Google Scholar 

  33. Chen L, Dornisch W, Klinkel S (2015) Hybrid collocation—Galerkin approach for the analysis of surface represented 3D-solids employing SB-FEM. Comput Methods Appl Mech Eng 295:268–289

    MathSciNet  MATH  Google Scholar 

  34. Chen L, Simeon B, Klinkel S (2016) A NURBS based Galerkin approach for the analysis of solids in boundary representation. Comput Methods Appl Mech Eng 305:777–805

    MathSciNet  MATH  Google Scholar 

  35. Wolf JP (2002) Response of unbounded soil in scaled boundary finite-element method. Earthq Eng Struct Dyn 31(1):15–32

    Google Scholar 

  36. Gravenkamp H, Natarajan S (2018) Scaled boundary polygons for linear elastodynamics. Comput Methods Appl Mech Eng 333:238–256

    MathSciNet  Google Scholar 

  37. Bazilevs Y, Long C, Akkerman I, Benson D, Shashkov MJ (2014) Isogeometric analysis of Lagrangian hydrodynamics: axisymmetric formulation in the rz-cylindrical coordinates. J Comput Phys 262:244–261

    MathSciNet  MATH  Google Scholar 

  38. Toshniwal D, Speleers H, Hiemstra RR, Hughes TJR (2017) Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis. Comput Methods Appl Mech Eng 316:1005–1061

    MathSciNet  Google Scholar 

  39. Arioli C, Shamanskiy A, Klinkel S, Simeon B (2019) Scaled boundary parametrizations in isogeometric analysis. Comput Methods Appl Mech Eng 349:576–594

    MathSciNet  Google Scholar 

  40. Taylor RL (2014) FEAP—finite element analysis program. University of California, Berkeley

    Google Scholar 

  41. Dornisch W, Vitucci G, Klinkel S (2015) The weak substitution method—an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. Int J Numer Methods Eng 103:205–234

    MathSciNet  MATH  Google Scholar 

  42. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449

    MATH  Google Scholar 

  43. Mathisen KM, Okstad KM, Kvamsdal T, Raknes SB (2011) Isogeometric analysis of finite deformation nearly incompressible solids. J Struct Mech 44:260–278

    Google Scholar 

  44. Chasapi M, Klinkel S (2018) Scaled boundary isogeometric analysis of large deformations in solids. Proc Appl Math Mech 18(1):e201800155

    Google Scholar 

  45. Chasapi M, Klinkel S (2019) A physically and geometrically nonlinear formulation for isogeometric analysis of solids in boundary representation. Proc Appl Math Mech 19(1):e201900131

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Clarissa Arioli and Bernd Simeon from the Technical University of Kaiserslautern for the fruitful discussions on the scaled boundary approach. The financial support of the DFG (German Research Foundation) under Grant No. KL1345/10-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Klinkel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasapi, M., Klinkel, S. Geometrically nonlinear analysis of solids using an isogeometric formulation in boundary representation. Comput Mech 65, 355–373 (2020). https://doi.org/10.1007/s00466-019-01772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01772-6

Keywords

Navigation