Hybrid coupling of CG and HDG discretizations based on Nitsche’s method


A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG–HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The continuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann condition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636

    MATH  Google Scholar 

  2. 2.

    Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Huerta A, Fernández-Méndez S, Liu WK (2004) A comparison of two formulations to blend finite elements and mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1105–1117

    MATH  Google Scholar 

  4. 4.

    Fernández-Méndez S, Bonet J, Huerta A (2005) Continuous blending of SPH with finite elements. Comput Struct 83(17–18):1448–1458

    MathSciNet  Google Scholar 

  5. 5.

    Casadei F, Leconte N (2011) Coupling finite elements and finite volumes by Lagrange multipliers for explicit dynamic fluid-structure interaction. Int J Numer Methods Eng 86(1):1–17

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Chidyagwai P, Mishev I, Rivière B (2011) On the coupling of finite volume and discontinuous Galerkin method for elliptic problems. J Comput Appl Math 235(8):2193–2204

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chernyshenko AY, Olshanskii MA, Vassilevski YV (2018) A hybrid finite volume-finite element method for bulk-surface coupled problems. J Comput Phys 352:516–533

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Moortgat J, Firoozabadi A (2016) Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids. J Comput Phys 315:476–500

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Hoteit H, Firoozabadi A (2018) Modeling of multicomponent diffusions and natural convection in unfractured and fractured media by discontinuous Galerkin and mixed methods. Int J Numer Methods Eng 114(5):535–556

    MathSciNet  Google Scholar 

  10. 10.

    Bertsekas DP (1982) Constrained optimization and Lagrange multiplier methods. Athena Scientific series in optimization and neural computation. Athena Scientific, Belmont

    MATH  Google Scholar 

  11. 11.

    Nitsche J (1971) Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bernardi C, Maday Y, Patera AT (1992) A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis H, Lions J-L (eds) Nonlinear partial differential equations and their applications. Collège de France Seminar XI, Paris

    Google Scholar 

  13. 13.

    Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. In: Kaper HG, Garbey M, Pieper GW (eds) Asymptotic and numerical methods for partial differential equations with critical parameters. Springer, Dordrecht, pp 269–286

    Google Scholar 

  14. 14.

    Le Tallec P, Sassi T (1995) Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math Comput 64(212):1367–1396

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Wieners C, Wohlmuth BI (1998) The coupling of mixed and conforming finite element discretizations. In: Domain decomposition methods, 10 (Boulder, CO, 1997). Contemporary mathematics, vol 218. American Mathematical Society, Providence, pp 547–554

  16. 16.

    Achdou Y, Maday Y, Widlund O (1999) Iterative substructuring preconditioners for mortar element methods in two dimensions. SIAM J Numer Anal 36(2):551–580

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Ben Belgacem F (1999) The mortar finite element method with Lagrange multipliers. Numer Math 84(2):173–197

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Agouzal A, Lamoulie L, Thomas J-M (1999) 3D domain decomposition method coupling conforming and nonconforming finite elements. ESAIM Math Model Numer Anal 33(4):771–780

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Arbogast T, Cowsar L, Wheeler M, Yotov I (2000) Mixed finite element methods on nonmatching multiblock grids. SIAM J Numer Anal 37(4):1295–1315

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Buffa A, Maday Y, Rapetti F (2001) A sliding mesh-mortar method for a two dimensional Eddy currents model of electric engines. ESAIM Math Model Numer Anal 35(2):191–228

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Rivière B, Wheeler M (2002) Coupling locally conservative methods for single phase flow. Comput Geosci 6(3):269–284

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Girault V, Sun S, Wheeler M, Yotov I (2008) Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements. SIAM J Numer Anal 46(2):949–979

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Kim M-Y, Wheeler MF (2014) Coupling discontinuous Galerkin discretizations using mortar finite elements for advection-diffusion–reaction problems. Comput Math Appl 67(1):181–198

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Stenberg R (1998) Mortaring by a method of J. A. Nitsche. In: Idelsohn SR, Oñate E, Dvorkin E (eds) Computational mechanics: new trends and applications. CIMNE, Barcelona

    Google Scholar 

  25. 25.

    Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decomposition with non-matching grids. ESAIM Math Model Numer Anal 37(2):209–225

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Braess D (2001) Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. 27.

    Cockburn B, Karniadakis GE, Shu C-W (2000) The development of discontinuous Galerkin methods. In: Discontinuous Galerkin methods (Newport, RI, 1999). Lecture notes computational science and engineering, vol 11. Springer, Berlin, pp 3–50

    Google Scholar 

  28. 28.

    Rivière B (2008) Discontinuous Galerkin methods for solving elliptic and parabolic equations. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  29. 29.

    Di Pietro DA, Ern A (2012) Mathematical aspects of discontinuous Galerkin methods, vol 69. Springer, Heidelberg

    MATH  Google Scholar 

  30. 30.

    Cangiani A, Dong Z, Georgoulis EH, Houston P (2017) hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer, Berlin

    MATH  Google Scholar 

  31. 31.

    Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2):251–285

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Abgrall R, Ricchiuto M (2017) High-order methods for CFD. In: Encyclopedia of computational mechanics, 2nd edn. Wiley, New York, pp 1–54

  33. 33.

    Giacomini M, Sevilla R (2019) Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity. SN Appl Sci 1:1047

    Google Scholar 

  34. 34.

    Cockburn B, Shu C (1998) The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J Numer Anal 35(6):2440–2463

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Perugia I, Schötzau D (2001) On the coupling of local discontinuous Galerkin and conforming finite element methods. J Sci Comput 16(4):411–433

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Dawson C, Proft J (2002) Coupling of continuous and discontinuous Galerkin methods for transport problems. Comput Methods Appl Mech Eng 191(29):3213–3231

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Dawson C, Proft J (2003) Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water. Comput Methods Appl Mech Eng 192(47):5123–5145

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Dawson C, Proft J (2004) Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput Methods Appl Mech Eng 193(3):289–318

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–380

    Google Scholar 

  40. 40.

    Fraeijs de Veubeke B (1965) Displacement and equilibrium models in the finite element method. In: Zienkiewicz OC, Holister GS (eds) Stress analysis. Wiley, New York, pp 145–197

    Google Scholar 

  41. 41.

    Cockburn B, Dong B, Guzmán J (2008) A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math Comput 77(264):1887–1916

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2):1319–1365

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J Comput Phys 228(9):3232–3254

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J Comput Phys 228(23):8841–8855

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Cockburn B, Nguyen NC, Peraire J (2010) A comparison of HDG methods for Stokes flow. J Sci Comput 45(1–3):215–237

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Nguyen NC, Peraire J, Cockburn B (2011) An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J Comput Phys 230(4):1147–1170

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Di Pietro DA, Ern A, Lemaire S (2014) An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput Methods Appl Math 14(4):461–472

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Di Pietro DA, Ern A (2015) A hybrid high-order locking-free method for linear elasticity on general meshes. Comput Methods Appl Mech Eng 283:1–21

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Abbas M, Ern A, Pignet N (2018) Hybrid high-order methods for finite deformations of hyperelastic materials. Comput Mech 62(4):909–928

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Abbas M, Ern A, Pignet N (2019) A hybrid high-order method for incremental associative plasticity with small deformations. Comput Methods Appl Mech Eng 346:891–912

    MathSciNet  Google Scholar 

  51. 51.

    Cockburn B, Guzmán J, Sayas F (2012) Coupling of Raviart–Thomas and hybridizable discontinuous Galerkin methods with BEM. SIAM J Numer Anal 50(5):2778–2801

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Fu Z, Heuer N, Sayas F-J (2017) A non-symmetric coupling of boundary elements with the hybridizable discontinuous Galerkin method. Comput Math Appl 74(11):2752–2768

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Paipuri M, Tiago C, Fernández-Méndez S (2019) Coupling of continuous and hybridizable discontinuous Galerkin methods: application to conjugate heat transfer problem. J Sci Comput 78(1):321–350

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Giacomini M (2018) An equilibrated fluxes approach to the certified descent algorithm for shape optimization using conforming finite element and discontinuous Galerkin discretizations. J Sci Comput 75(1):560–595

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Brenner SC, Sung L-Y (1992) Linear finite element methods for planar linear elasticity. Math Comput 59(200):321–338

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Fraeijs de Veubeke BM (1975) Stress function approach. In: Proceedings of the world congress on finite element methods in structural mechanics, Rapport du LTAS, Universit de Lige. http://hdl.handle.net/2268/205875. Accessed 24 June 2019

  57. 57.

    Arnold DN, Brezzi F, Douglas J Jr (1984) PEERS: a new mixed finite element for plane elasticity. Jpn J Appl Math 1(2):347–367

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Stenberg R (1988) A family of mixed finite elements for the elasticity problem. Numer Math 53(5):513–538

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Arnold DN, Winther R (2002) Mixed finite elements for elasticity. Numer Math 92(3):401–419

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Moitinho de Almeida JP, Maunder EAW (2017) Equilibrium finite element formulations. Wiley, New York

    MATH  Google Scholar 

  61. 61.

    Crouzeix M, Raviart P-A (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev Française Automat Informat Recherche Opérationnelle Sér Rouge 7(R–3):33–75

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Hansbo P, Larson MG (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191(17–18):1895–1908

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Cockburn B, Schötzau D, Wang J (2006) Discontinuous Galerkin methods for incompressible elastic materials. Comput Methods Appl Mech Eng 195(25–28):3184–3204

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Bramwell J, Demkowicz L, Gopalakrishnan J, Qiu W (2012) A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses. Numer Math 122(4):671–707

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Soon S-C, Cockburn B, Stolarski HK (2009) A hybridizable discontinuous Galerkin method for linear elasticity. Int J Numer Methods Eng 80(8):1058–1092

    MathSciNet  MATH  Google Scholar 

  66. 66.

    Fu G, Cockburn B, Stolarski H (2015) Analysis of an HDG method for linear elasticity. Int J Numer Methods Eng 102(3–4):551–575

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Cockburn B, Shi K (2013) Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J Numer Anal 33(3):747–770

    MathSciNet  MATH  Google Scholar 

  68. 68.

    Cockburn B, Fu G (2017) Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions. IMA J Numer Anal 38(2):566–604

    MathSciNet  MATH  Google Scholar 

  69. 69.

    Qiu W, Shen J, Shi K (2018) An HDG method for linear elasticity with strong symmetric stresses. Math Comput 87(309):69–93

    MathSciNet  MATH  Google Scholar 

  70. 70.

    Brezzi F, Fortin M (1991) Mixed and hybrid finite elements methods. Springer series in computational mathematics. Springer, Berlin

    MATH  Google Scholar 

  71. 71.

    Sevilla R, Giacomini M, Karkoulias A, Huerta A (2018) A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. Int J Numer Methods Eng 116(2):91–116

    MathSciNet  MATH  Google Scholar 

  72. 72.

    Sevilla R, Giacomini M, Huerta A (2019) A locking-free face-centred finite volume (FCFV) method for linear elastostatics. Comput Struct 212:43–57

    Google Scholar 

  73. 73.

    Sevilla R (2019) HDG-NEFEM for two dimensional linear elasticity. Comput Struct 220:69–80

    Google Scholar 

  74. 74.

    Fish J, Belytschko T (2007) A first course in finite elements. Wiley, New York

    MATH  Google Scholar 

  75. 75.

    Kabaria H, Lew AJ, Cockburn B (2015) A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput Methods Appl Mech Eng 283:303–329

    MathSciNet  MATH  Google Scholar 

  76. 76.

    Cockburn B, Shen J (2019) An algorithm for stabilizing hybridizable discontinuous Galerkin methods for nonlinear elasticity. Results Appl Math 1:100001

    Google Scholar 

  77. 77.

    Terrana S, Nguyen NC, Bonet J, Peraire J (2019) A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures. Comput Methods Appl Mech Eng 352:561–585

    MathSciNet  Google Scholar 

  78. 78.

    Peraire J, Nguyen NC, Cockburn B (2010) A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, number [2010-0363]

  79. 79.

    Fernandez P, Nguyen NC, Peraire J (2017) The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows. J Comput Phys 336:308–329

    MathSciNet  MATH  Google Scholar 

  80. 80.

    Williams DM (2018) An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier–Stokes equations. Math Comput 87(309):95–121

    MathSciNet  MATH  Google Scholar 

  81. 81.

    Montlaur A, Fernández-Méndez S, Huerta A (2008) Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int J Numer Methods Fluids 57(9):1071–1092

    MathSciNet  MATH  Google Scholar 

  82. 82.

    Sevilla R, Huerta A (2016) Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In: Schröder J, Wriggers P (eds) Advanced finite element technologies, vol 566. CISM international centre for mechanical sciences. Springer, Berlin, pp 105–129

    Google Scholar 

  83. 83.

    Oden JT, Babuška I, Baumann C (1998) A discontinuous hp finite element method for diffusion problems. J Comput Phys 146(2):491–519

    MathSciNet  MATH  Google Scholar 

  84. 84.

    Giacomini M, Karkoulias K, Sevilla R, Huerta A (2018) A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor. J Sci Comput 77(3):1679–1702

    MathSciNet  MATH  Google Scholar 

  85. 85.

    Sarrate J, Huerta A (2000) Efficient unstructured quadrilateral mesh generation. Int J Numer Methods Eng 49(10):87–112

    MATH  Google Scholar 

  86. 86.

    Sarrate J, Huerta A (2001) An improved algorithm to smooth graded quadrilateral meshes preserving the prescribed element size. Commun Numer Methods Eng 17(2):89–99

    MATH  Google Scholar 

  87. 87.

    Hansbo P (2005) Nitsche’s method for interface problems in computa-tional mechanics. GAMM-Mitteilungen 28(2):183–206

    MathSciNet  MATH  Google Scholar 

  88. 88.

    Griebel M, Schweitzer MA (2003) A particle-partition of unity method part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

    Google Scholar 

  89. 89.

    Lamichhane B (2009) Mortar finite elements for coupling compressible and nearly incompressible materials in elasticity. Int J Numer Anal Model 6:177–192

    MathSciNet  MATH  Google Scholar 

  90. 90.

    Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New York

    Google Scholar 

Download references


This work is partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie actions (Grant Nos. 675919 and 764636), the Spanish Ministry of Economy and Competitiveness (Grant No. DPI2017-85139-C2-2-R) and the Generalitat de Catalunya (Grant No. 2017-SGR-1278). Andrea La Spina is supported by the European Education, Audiovisual and Culture Executive Agency (EACEA) under the Erasmus Mundus Joint Doctorate Simulation in Engineering and Entrepreneurship Development (SEED), FPA 2013-0043.

Author information



Corresponding author

Correspondence to Matteo Giacomini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

La Spina, A., Giacomini, M. & Huerta, A. Hybrid coupling of CG and HDG discretizations based on Nitsche’s method. Comput Mech 65, 311–330 (2020). https://doi.org/10.1007/s00466-019-01770-8

Download citation


  • Hybridizable discontinuous Galerkin
  • Coupling with finite element
  • Nitsche’s method
  • Locking-free
  • Superconvergence