A phase-field model for fractures in nearly incompressible solids

Abstract

Within this work, we develop a phase-field description for simulating fractures in nearly incompressible materials. It is well-known that low-order approximations generally lead to volume-locking behaviors. We propose an approach that builds on a mixed form of the displacement equation with two unknowns: a displacement field and a hydro-static pressure variable. Corresponding function spaces have to be chosen properly. On the discrete level, stable Taylor–Hood elements are employed for the displacement-pressure system. Two additional variables describe the phase-field solution and the crack irreversibility constraint. Therefore, the final system contains four variables: displacements, pressure, phase-field, and a Lagrange multiplier. The resulting discrete system is nonlinear and solved monolithically with a Newton-type method. Our proposed model is demonstrated by means of several numerical studies based on three numerical tests. First, different finite element choices are compared in order to investigate the influence of higher-order elements in the proposed settings. Further, numerical results including spatial mesh refinement studies and variations in Poisson’s ratio approximating the incompressible limit, are presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ambrosio L, Tortorelli V (1992) On the approximation of free discontinuity problems. Bollettino dell’Unione Matematica Italiana 6(1):105–123

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036

    MathSciNet  Article  Google Scholar 

  4. 4.

    Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret J-P, Turcksin B, Wells D (2017) The deal.II library, version 8.5. J Numer Math 25:137–145. https://doi.org/10.1515/jnma-2017-0058

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Arnold DN (1981) Discretization by finite elements of a model parameter dependent problem. Numer Math 37(3):405–421

    MathSciNet  Article  Google Scholar 

  6. 6.

    Babuška I (1971) The rate of convergence for the finite element method. SIAM J Numer Anal 8(2):304–315

    MathSciNet  Article  Google Scholar 

  7. 7.

    Babuška I, Suri M (1992) Locking effects in the finite element approximation of elasticity problems. Numer Math 62(1):439–463

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bernard P-E, Moës N, Chevaugeon N (2012) Damage growth modeling using the thick level set (TLS) approach: efficient discretization for quasi-static loadings. Comput Methods Appl Mech Eng 233:11–27

    MathSciNet  Article  Google Scholar 

  9. 9.

    Braess D (2007) Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  10. 10.

    Brenner S, Scott L (1994) The mathematical theory of finite element methods. Springer, New York

    Google Scholar 

  11. 11.

    Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue Française D’Automatique, Informatique, Recherche Opérationnelle. Analyse Numérique 8(R2):129–151

    MathSciNet  Article  Google Scholar 

  12. 12.

    Ciarlet PG (2002) The finite element method for elliptic problems. Class Appl Math 40:1–511

    MathSciNet  Google Scholar 

  13. 13.

    Cockburn B, Karniadakis GE, Shu C-W (eds) (2000) The development of discontinuous Galerkin methods. In: Discontinuous Galerkin methods. Springer, Berlin, Heidelberg, pp 3–50

  14. 14.

    Davis TA (2004) Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method. ACM Trans Math Software 30(2):196–199

    MathSciNet  Article  Google Scholar 

  15. 15.

    Feist C, Hofstetter G (2006) An embedded strong discontinuity model for cracking of plain concrete. Comput Methods Appl Mech Eng 195(52):7115–7138

    MathSciNet  Article  Google Scholar 

  16. 16.

    Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    MathSciNet  Article  Google Scholar 

  17. 17.

    Girault V, Raviart P-A (2012) Finite element methods for Navier-Stokes equations: theory and algorithms, vol 5. Springer, Berlin

    Google Scholar 

  18. 18.

    Goll C, Wick T, Wollner W (2017) DOpElib: Differential equations and optimization environment; A goal oriented software library for solving PDEs and optimization problems with PDEs. Archive of Numerical Software 5(2):1–14

    Google Scholar 

  19. 19.

    Griffith A (1920) The phenomena of flow and rupture in solids. Trans R Soc A 221:163–198

    Article  Google Scholar 

  20. 20.

    Hansbo P, Larson MG (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191(17–18):1895–1908

    MathSciNet  Article  Google Scholar 

  21. 21.

    Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    MathSciNet  Article  Google Scholar 

  22. 22.

    Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490

    Article  Google Scholar 

  23. 23.

    Holzapfel GA, Eberlein R, Wriggers P, Weizsäcker HW (1996) Large strain analysis of soft biological membranes: formulation and finite element analysis. Comput Methods Appl Mech Eng 132(1–2):45–61

    Article  Google Scholar 

  24. 24.

    Ito K, Kunisch K (2008) Lagrange multiplier approach to variational problems and applications. SIAM series, vol 15

  25. 25.

    Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods, vol 8. SIAM, Philadelphia

    Google Scholar 

  26. 26.

    Kubo A, Umeno Y (2017) Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: a continuum model study. Sci Rep 7:42305

    Article  Google Scholar 

  27. 27.

    Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput Methods Appl Mech Eng 196(21–24):2338–2357

    Article  Google Scholar 

  28. 28.

    Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    MathSciNet  Article  Google Scholar 

  29. 29.

    Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Fluids 83:1273–1311

    MathSciNet  Article  Google Scholar 

  30. 30.

    Pham K, Amor H, Marigo J-J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  31. 31.

    Rockafellar RT (1993) Lagrange multipliers and optimality. SIAM Rev 35(2):183–238

    MathSciNet  Article  Google Scholar 

  32. 32.

    Schröder J, Neff P, Balzani D (2005) A variational approach for materially stable anisotropic hyperelasticity. Int J Solids Struct 42(15):4352–4371

    MathSciNet  Article  Google Scholar 

  33. 33.

    Šuštarič P, Seabra MR, de Sa JMC, Rodič T (2014) Sensitivity analysis based crack propagation criterion for compressible and (near) incompressible hyperelastic materials. Finite Elem Anal Design 82:1–15

    MathSciNet  Article  Google Scholar 

  34. 34.

    Taylor R (2011) Isogeometric analysis of nearly incompressible solids. Int J Numer Methods Eng 87(1–5):273–288

    MathSciNet  Article  Google Scholar 

  35. 35.

    The Differential Equation and Optimization Environment: DOpElib. http://www.dopelib.net. Accessed 5 June 2019

  36. 36.

    Unger JF, Eckardt S, Könke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng 196(41–44):4087–4100

    Article  Google Scholar 

  37. 37.

    Vexler B, Wollner W (2008) Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J Control Optim 47(1):509–534

    MathSciNet  Article  Google Scholar 

  38. 38.

    Wick T (2017) An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation. SIAM J Sci Comput 39(4):B589–B617

    MathSciNet  Article  Google Scholar 

  39. 39.

    Wick T (2017) Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation. Comput Methods Appl Mech Eng 325:577–611

    MathSciNet  Article  Google Scholar 

  40. 40.

    Wihler T (2006) Locking-free adaptive discontinuous galerkin FEM for linear elasticity problems. Math Comput 75(255):1087–1102

    MathSciNet  Article  Google Scholar 

  41. 41.

    Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton. Innsbruck University Press, Innsbruck

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the German Research Foundation, Priority Program 1748 (DFG SPP 1748) named Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis. Our subproject within the SPP1748 reads Structure Preserving Adaptive Enriched Galerkin Methods for Pressure-Driven 3D Fracture Phase-Field Models (WI 4367/2-1 and WO 1936/5-1). The project number is 392587580.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Wick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mang, K., Wick, T. & Wollner, W. A phase-field model for fractures in nearly incompressible solids. Comput Mech 65, 61–78 (2020). https://doi.org/10.1007/s00466-019-01752-w

Download citation

Keywords

  • Finite elements
  • Phase-field
  • Mixed system
  • Incompressible solids
  • Fracture

Mathematics Subject Classification

  • 65N30
  • 65N12
  • 35Q74
  • 74R10