Abstract
Parallel computational homogenization using the well-knwon \(\hbox {FE}^2\) approach is described and combined with domain decomposition and algebraic multigrid solvers. It is the purpose of this paper to show that and how the \(\hbox {FE}^2\) method can take advantage of the largest supercomputers available and those of the upcoming exascale era for virtual material testing of micro-heterogeneous materials such as advanced steel. The \(\hbox {FE}^2\) method is a computational micro-macro homogenization approach where at each Gauss integration point of the macroscopic finite element problem a microscopic finite element problem, defined on a representative volume element (RVE), is attached. Note that the \(\hbox {FE}^2\) method is not embarrassingly parallel since the RVE problems are coupled through the macroscopic problem. Numerical results considering different grids on both, the macroscopic and microscopic level as well as weak scaling results for up to a million parallel processes are presented.
This is a preview of subscription content, access via your institution.






















Notes
References
Abdulle A, E W, Engquist B, Vanden-Eijnden E (2012) The heterogeneous multiscale method. Acta Numer 21:1–87
Amestoy PR, Duff IS, L’Excellent J-Y, Koster J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41
Baker AH, Falgout RD, Kolev TV, Yang UM (2012) Scaling hypre’s multigrid solvers to 100,000 cores. In: Berry MW, Gallivan KA, Gallopoulos E, Philippe B, Saad Y, Saied F, Grama A (eds) High-performance scientific computing: algorithms and applications. Springer, London, pp 261–279
Baker AH, Klawonn A, Kolev T, Lanser M, Rheinbach O, Yang UM (2016) Scalability of classical algebraic multigrid for elasticity to half a million parallel tasks. In: Bungartz H-J, Neumann P, Nagel EW (eds) Software for exascale computing - SPPEXA 2013–2015, vol 113, Springer lecture notes in engineering and computer science, pp 113–140. Also TUBAF Preprint 2015–14 at http://tu-freiberg.de/fakult1/forschung/preprints
Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2014) PETSc users manual. Technical report ANL-95/11—revision 3.5, Argonne National Laboratory
Balzani D, Brands D, Schröder J (2013) Construction of statistically similar representative volume elements. In: Schröder J, Hackl K (eds) Plasticity and beyond: microstructures, crystal-plasticity and phase transitions. CISM lecture notes no. 550
Balzani D, Scheunemann L, Brands D, Schröder J (2014) Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. Comput Mech 54:1269–1284
Balzani D, Gandhi A, Klawonn A, Lanser M, Rheinbach O, Schröder J (2016) One-way and fully-coupled \(\text{FE}^2\) methods for heterogeneous elasticity and plasticity problems: parallel scalability and an application to thermo-elastoplasticity of dual-phase steels. Springer, Cham, pp 91–112. Also TUBAF Preprint: 2015–13. http://tu-freiberg.de/fakult1/forschung/preprints
Bishop JE, Emery JM, Field RV, Weinberger CR, Littlewood DJ (2015) Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput Methods Appl Mech Eng 287:262–289
Bishop JE, Emery JM, Battaile CC, Littlewood DJ, Baines AJ (2016) Direct numerical simulations in solid mechanics for quantifying the macroscale effects of microstructure and material model-form error. JOM 68(5):1427–1445
Bordeu F, Boucard P-A, Gosselet P (2009) Balancing domain decomposition with nonlinear relocalization: parallel implementation for laminates. In: IvÂnyi P, Topping BHV (eds) Proceedings of 1st international conference on parallel, distributed and grid computing for engineering, Civil-Comp Press, Stirlingshire
Brands D, Balzani D, Scheunemann L, Schröder J, Richter H, Raabe D (2016) Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data. Arch Appl Mech 86(3):575–598
Cai X-C, Keyes DE (2002) Nonlinearly preconditioned inexact Newton algorithms. SIAM J Sci Comput 24(1):183–200 (electronic)
Cai X-C, Keyes DE, Marcinkowski L (2002) Non-linear additive Schwarz preconditioners and application in computational fluid dynamics. Int J Numer Methods Fluids 40(12):1463–1470
Davis TA (2004) A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):165–195
de Geus TWJ, Vondřejc J, Zeman J, Peerlings RHJ, Geers MGD (2017) Finite strain FFT-based non-linear solvers made simple. Comput Methods Appl Mech Eng 318:412–430
E W, Bjorn E (2003) The heterogeneous multiscale methods. Commun Math Sci 1(1):87–132
Eidel B, Fischer A (2018) The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the fe2 method. Comput Methods Appl Mech Eng 329(Supplement C):332–368
Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53
Falgout RD, Jones JE, Yang UM (2005) The design and implementation of hypre, a library of parallel high performance preconditioners. In: Bruaset AM, Bjorstad P, Tveito A (eds) Chapter in numerical solution of partial differential equations on parallel computers, Springer. Also available as LLNL Technical Report UCRL-JRNL-205459 (2004)
Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50:1523–1544
Farhat C, Lesoinne M, Pierson K (2000) A scalable dual-primal domain decomposition method. Numer Linear Algebra Appl 7:687–714
Feyel F (1999) Multiscale \(\text{ FE }^2\) elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354
Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28):3233–3244
Feyel F, Chaboche J-L (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330
Groß C (2009) A unifying theory for nonlinear additively and multiplicatively preconditioned globalization strategies: convergence results and examples from the field of nonlinear elastostatics and elastodynamics. PhD thesis. Deutsche Nationalbibliothek. https://www.deutsche-digitale-bibliothek.de/item/PCLVYPVW5OCPUOTIKRKTMSHMFSNWEFPL
Groß C, Krause R (2010) A generalized recursive trust-region approach—nonlinear multiplicatively preconditioned trust-region methods and applications. Technical report 2010-09, Institute of Computational Science, Universita della Svizzera italiana
Groß C, Krause R (2011) On the globalization of ASPIN employing trust-region control strategies—convergence analysis and numerical examples. Technical report 2011–03, Inst. Comp. Sci., Universita della Svizzera italiana
Henson VE, Yang UM (2002) BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl Numer Math 41:155–177
Hwang F-N, Cai X-C (2005) Improving robustness and parallel scalability of Newton method through nonlinear preconditioning. In: Domain decomposition methods in science and engineering, vol 40, Lecture notes in computational science and engineering, Springer, Berlin, pp 201–208
Hwang F-N, Cai X-C (2007) A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms. Comput Methods Appl Mech Eng 196(8):1603–1611
Kabel M, Merkert D, Schneider M (2015) Use of composite voxels in FFT-based homogenization. Comput Methods Appl Mech Eng 294:168–188
Klawonn A, Lanser M, Rheinbach O (2014) Nonlinear FETI-DP and BDDC methods. SIAM J Sci Comput 36(2):A737–A765
Klawonn A, Lanser M, Rheinbach O (2015) FE2TI (ex\_nl/\(\text{ fe }^2\)) EXASTEEL—bridging scales for multiphase steels
Klawonn A, Lanser M, Rheinbach O (2015) Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations. SIAM J Sci Comput 37(6):C667–C696
Klawonn A, Lanser M, Rheinbach O (2016) \(\text{ FE }^2\)TI: computational scale bridging for dual-phase steels. In: IOS series advances in parallel computing, vol 27, Parallel computing: on the road to exascale; Proceedings of ParCo2015, pp 797–806. Also TUBAF Preprint: 2015-12. http://tu-freiberg.de/fakult1/forschung/preprints
Klawonn A, Lanser M, Rheinbach O (2016) A highly scalable implementation of inexact nonlinear feti-dp without sparse direct solvers. In: Karasözen B, Manguoğlu M, Tezer-Sezgin M, Göktepe S, Uğur Ö (eds) Numerical mathematics and advanced applications ENUMATH 2015, Springer, Cham, pp 255–264
Klawonn A, Lanser M, Rheinbach O (2017) Nonlinear BDDC methods with inexact solvers (submitted)
Klawonn A, Lanser M, Rheinbach O, Stengel H, Wellein G (2015) Hybrid MPI/OpenMP parallelization in FETI-DP methods. Springer, Cham, pp 67–84
Klawonn A, Lanser M, Rheinbach O, Uran M (2017) Nonlinear FETI-DP and BDDC methods: a unified framework and parallel results. SIAM J Sci Comput 39(6):C417–C451
Klawonn A, Rheinbach O (2010) Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM Z Angew Math Mech 90(1):5–32
Klinkel SO (2000) Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. Berichte des Instituts für Baustatik, Karlsruher Institut für Technologie. Inst. für Baustatik
Knoll DA, Keyes DE (2004) Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397
Kochmann J, Wulfinghoff S, Reese S, Mianroodi JR, Svendsen B (2016) Two-scale FE-FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Comput Methods Appl Mech Eng 305:89–110
Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27:37–48
Lanser M (2015) Nonlinear FETI-DP and BDDC Methods. PhD thesis, Universität zu Köln
Lopes IR, Pires FA, Reis FJ (2018) A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains. Comput Mech 61(1–2):157–80
Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418
Mosby M, Matouš K (2015) Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. Int J Numerl Methods Eng 102(3–4):748–765
Mosby M, Matouš K (2016) Computational homogenization at extreme scales. Extreme Mech Lett 6:68–74
Moulinec H, Suquet P (1994) Fast numerical method for computing the linear and nonlinear properties of composites. C R Acad Sci Paris 318:1417–1423
Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual-domain decomposition method: application to structural problems with damage. Int J. Multiscale Comput Eng 6(3):251–262
Rüde U, Willcox K, McInnes LC, De Sterck H, Biros G, Bungartz H-J et al (2016) Research and education in computational science and engineering. CoRR (submitted to SIAM Rev)
Schenk O, Gärtner K (2011) PARDISO. In: Padua DA (ed) Encycl Parallel Comput. Springer, Berlin, pp 1458–1464
Scheunemann L, Balzani D, Brands D, Schröder J (2015) Design of 3D statistically similar representative volume elements based on Minkowski functionals. Mech Materi 90(Supplement C):185–201
Scheunemann L, Balzani D, Brands D, Schröder J (2015) Construction of statistically similar RVEs. In: Analysis and computation of microstructure in finite plasticity, vol 78, Lecture notes in computational science and engineering, Springer, Cham, pp 219–256
Schneider M, Merkert D, Kabel M (2017) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng 109(10):1461–1489
Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720
Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. PhD thesis, Bericht aus der Forschungsreihe des Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart, Habilitationsschrift
Schröder J (2013) A numerical two-scale homogenization scheme: the FE\({}^2\)-method. In: Schröder J, Hackl K (eds) Plasticity and beyond–microstructures, crystal-plasticity and phase transitions (CISM lecture notes 550), Springer
Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192
Spahn J, Andrä H, Kabel M, Müller R (2014) A multiscale approach for modeling progressive damage of composite materials using fast fourier transforms. Comput Methods Appl Mech Eng 268:871–883
Stephan M, Docter J (2015) JUQUEEN: IBM blue gene/Q® supercomputer system at the Jülich supercomputing centre. J Largescale Res Facil 1:A1
Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory, Springer series in computational mathematics, vol 34, Springer, Berlin
Wittmann M, Hager G, Janalik R, Lanser M, Klawonn A, Rheinbach O, Schenk O, Wellein G (2018) Multicore performance engineering of sparse triangular solves using a modified roofline model (in preparation)
Zampini S (2016) PCBDDC: a class of robust dual-primal methods in PETSc. SIAM J Sci Comput 38(5):S282–S306
Acknowledgements
The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.eu) for providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ, http://www.lrz.de) and JUQUEEN [63] at Jülich Supercomputing Centre (JSC, http://www.fz-juelich.de/ias/jsc). GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MKW). This research used resources (Theta) of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. The authors acknowledge the use of data from [12] provided through a collaboration in the DFG SPPEXA project EXASTEEL. The authors would also like to thank Jörg Schröder, Dominik Brands, and Lisa Scheunemann (University of Duisburg-Essen) for providing the SSRVEs, the J2 plasticity model, and many fruitful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported in part by Deutsche Forschungsgemeinschaft (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) under Grants KL 2094/4-1, KL 2094/4-2, RH 122/2-1, and RH 122/3-2.
Rights and permissions
About this article
Cite this article
Klawonn, A., Köhler, S., Lanser, M. et al. Computational homogenization with million-way parallelism using domain decomposition methods. Comput Mech 65, 1–22 (2020). https://doi.org/10.1007/s00466-019-01749-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00466-019-01749-5
Keywords
- \(\hbox {FE}^{2}\)
- Computational homogenization
- Domain decomposition
- Elasto-plasticity
- Parallel computing