Skip to main content
Log in

Modeling neurodegeneration in chronic traumatic encephalopathy using gradient damage models

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Chronic traumatic encephalopathy is a progressive neurodegenerative disorder that results from repetitive impacts to the head. Its distinguishing feature is an accumulation of abnormal tau proteins in characteristic regions within the brain. Histopathological studies reveal that tau consistently localizes at the depth of cerebral sulci; yet, the mechanistic origin of this pattern remains unclear. Here we show that a continuum damage model, enhanced with nonlocal gradients, can explain the initial distribution of abnormal tau proteins. We hypothesize that tau aggregation is associated with neuronal death, which we represent as tissue softening and stiffness degradation. Our simulations correctly identify the initial locations of tau deposition, at the depth of cerebral sulci, from where damage spreads within the cortical layer and then across the entire brain. Our computational model has the potential to provide a mechanistic explanation of the stereotypic histopathology of chronic traumatic encephalopathy and predict the cumulative effects of repeated mild traumatic brain injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006

    Article  Google Scholar 

  2. Bain AC, Meaney DF (2000) Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng 122(6):615–622. https://doi.org/10.1115/1.1324667

    Article  Google Scholar 

  3. Barber TW, Brockway JA, Higgins LS (1970) The density of tissues in and about the head. Acta Neurol Scand 46(1):85–92. https://doi.org/10.1111/j.1600-0404.1970.tb05606.x

    Article  Google Scholar 

  4. Bažant ZP, Belytschko TB, Chang T-P (1984) Continuum theory for strain softening. J Eng Mech 110(12):1666–1692. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1666)

    Article  Google Scholar 

  5. Braak H, Del Tredici K (2011) The pathological process underlying alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181. https://doi.org/10.1007/s00401-010-0789-4

    Article  Google Scholar 

  6. Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E, Holzapfel G (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340. https://doi.org/10.1016/j.actbio.2016.10.036

    Article  Google Scholar 

  7. Cloots RJH, Gervaise HMT, van Dommelen JAW, Geers MGD (2008) Biomechanics of traumatic brain injury: Influences of the morphologic heterogeneities of the cerebral cortex. Ann Biomed Eng 36(7):1203. https://doi.org/10.1007/s10439-008-9510-3

    Article  Google Scholar 

  8. de Rooij R, Kuhl E (2016) Constitutive modeling of brain tissue: current perspectives. Appl Mech Rev 68:010801. https://doi.org/10.1115/1.4032436

    Article  Google Scholar 

  9. de Rooij R, Kuhl E (2018a) Microtubule polymerization and cross-link dynamics explain axonal stiffness and damage. Biophys J 114:201–212. https://doi.org/10.1016/j.bpj.2017.11.010

    Article  Google Scholar 

  10. de Rooij R, Kuhl E (2018b) Physical biology of axonal damage. Front Cell Neurosci 12:144. https://doi.org/10.3389/fncel.2018.00144

    Article  Google Scholar 

  11. de Rooij R, Miller KE, Kuhl E (2017) Modeling molecular mechanisms in the axon. Comput Mech 59:523–537. https://doi.org/10.1007/s00466-016-1359-y

    Article  Google Scholar 

  12. Elsayed T, Mota A, Fraternali F, Ortiz M (2008) Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng 197:4692–4701. https://doi.org/10.1016/j.cma.2008.06.006

    Article  MATH  Google Scholar 

  13. Franceschini G, Bigoni D, Regitnig P, Holzapfel GA (2006) Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J Mech Phys Solids 54:2592–2620. https://doi.org/10.1016/j.jmps.2006.05.004

    Article  MATH  Google Scholar 

  14. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. https://doi.org/10.1074/jbc.M808759200

    Article  Google Scholar 

  15. Garcia-Gonzaelz D, Jerusalem A (2019) Energy based mechano-electrophysiological model of CNS damage at the tissue scale. J Mech Phys Solids 125:22–37. https://doi.org/10.1016/j.jmps.2018.12.009

    Article  MathSciNet  Google Scholar 

  16. Ghajari M, Hellyer PJ, Sharp DJ (2017) Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain 140(2):333–343. https://doi.org/10.1093/brain/aww317

    Article  Google Scholar 

  17. Gilchrist MD, O’Donoghue D (2000) Simulation of the development of frontal head impact injury. Comput Mech 26:229–235. https://doi.org/10.1007/s004660000179

    Article  MATH  Google Scholar 

  18. Goriely A, Budday S, Kuhl E (2015) Neuromechanics: from neurons to brain. Adv Appl Mech 48:79–139. https://doi.org/10.1016/bs.aams.2015.10.002

    Article  Google Scholar 

  19. Harris TC, de Rooij R, Kuhl E (2018) The shrinking brain: Cerebral atrophy following traumatic brain injury. Ann Biomed Eng. https://doi.org/10.1007/s10439-018-02148-2

    Article  Google Scholar 

  20. Ho J, Kleiven S (2009) Can sulci protect the brain from traumatic injury? J Biomech 42(13):2074–2080. https://doi.org/10.1016/j.jbiomech.2009.06.051

    Article  Google Scholar 

  21. Jordan BD (2013) The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol 9:222–230. https://doi.org/10.1038/nrneurol.2013.33

    Article  Google Scholar 

  22. Jucker M, Walker LC (2018) Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 21:1341–1349. https://doi.org/10.1038/s41593-018-0238-6

    Article  Google Scholar 

  23. Karaman E, Isildak H, Yilmaz M, Enver O, Albayram S (2011) Encephalomalacia in the frontal lobe. J Craniofac Surg 22:2374–2375. https://doi.org/10.1097/SCS.0b013e318231e511

    Article  Google Scholar 

  24. Kiefer B, Waffenschmidt T, Sprave L, Menzel A (2018) A gradient-enhanced damage model coupled to plasticity-multi-surface formulation and algorithmic concepts. Int J Damage Mech 27:253–295. https://doi.org/10.1177/1056789516676306

    Article  Google Scholar 

  25. Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24(6):581–597. https://doi.org/10.1016/0020-7683(88)90059-5

    Article  MATH  Google Scholar 

  26. Lemaître J (1992) A course on damage mechanics. Springer, Berlin

    Book  Google Scholar 

  27. Mahnken R, Kuhl E (1999) Parameter identification of gradient enhanced damage models with the finite element method. Eur J Mech/A Solids. https://doi.org/10.1016/S0997-7538(99)00127-8

    Article  MATH  Google Scholar 

  28. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, Lee H-S, Hall G, Wojtowicz SM, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, Martin BR, Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein LE, Kowall NW, Cantu RC (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136(1):43–64. https://doi.org/10.1093/brain/aws307

    Article  Google Scholar 

  29. McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene C Dirk, Litvan I, Perl DP, Stein TD, Vonsattel J-P, Stewart W, Tripodis Y, Crary JF, Bieniek KF, Dams-O’Connor K, Alvarez VE, Gordon WA (2016) The first ninds/nibib consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75–86. https://doi.org/10.1007/s00401-015-1515-z

    Article  Google Scholar 

  30. Meaney DF, Morrison B, Bass CD (2014) The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng 136:021008-–021008-14. https://doi.org/10.1115/1.4026364

    Article  Google Scholar 

  31. Mukherjee P, Berman J, Chung S, Hess C, Henry R (2008) Diffusion tensor mr imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol 29(4):632–641. https://doi.org/10.3174/ajnr.A1051

    Article  Google Scholar 

  32. Nishimoto T, Murakami S (2000) Direct impact simulations of diffuse axonal injury by axial head model. JSAE Rev 21(1):117–123. https://doi.org/10.1016/S0389-4304(99)00079-X

    Article  Google Scholar 

  33. Ostwald R, Kuhl E, Menzel A (2019) On the implementation of finite deformation gradient-enhanced damage models. Comput Mech. https://doi.org/10.1007/s00466-019-01684-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403. doi: https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D

  35. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44):7723–7746. https://doi.org/10.1016/S0020-7683(01)00087-7

    Article  MATH  Google Scholar 

  36. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551. https://doi.org/10.1016/0020-7683(79)90081-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Shetty T, Raince A, Manning E, Tsiouris AJ (2016) Imaging in chronic traumatic encephalopathy and traumatic brain injury. Sports Health 8:26–36. https://doi.org/10.1177/1941738115588745

    Article  Google Scholar 

  38. Simo J, Ju J (1987a) Strain- and stress-based continuum damage models–II. Computational aspects. Int J Solids Struct 23(7):841–869. https://doi.org/10.1016/0020-7683(87)90084-9

    Article  MATH  Google Scholar 

  39. Simo JC, Ju JW (1987b) Strain- and stress-based continuum damage models–I. Formulation. Int J Solids Struct 23(7):821–840. https://doi.org/10.1016/0020-7683(87)90083-7

    Article  MATH  Google Scholar 

  40. Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9:211–221. https://doi.org/10.1038/nrneurol.2013.29

    Article  Google Scholar 

  41. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159. https://doi.org/10.1016/j.tins.2008.11.007

    Article  Google Scholar 

  42. Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Methods Eng 46(5):757–779

    Article  MathSciNet  Google Scholar 

  43. van den Bedem H, Kuhl E (2017) Molecular mechanisms of chronic traumatic encephalopathy. Curr Opin Biomed Eng 1:23–30. https://doi.org/10.1016/j.cobme.2017.02.003

    Article  Google Scholar 

  44. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC (2015) Tau imaging: early progress and future directions. Lancet Neurol 14(1):114–124. https://doi.org/10.1016/S1474-4422(14)70252-2

    Article  Google Scholar 

  45. Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842. https://doi.org/10.1016/j.cma.2013.10.013

    Article  MathSciNet  MATH  Google Scholar 

  46. Weickenmeier J, Kuhl E, Goriely A (2018a) The multiphysics of prion-like disease: progression and atrophy. Phys Rev Lett 121:158101. https://doi.org/10.1103/PhysRevLett.121.158101

    Article  Google Scholar 

  47. Weickenmeier J, Kurt M, Ozkaya E, de Rooij R, Ovaert TC, Ehman RL, Butts Pauly K, Kuhl E (2018b) Brain stiffens post mortem. J Mech Behav Biomed Mater 84:88–98. https://doi.org/10.1016/j.jmbbm.2018.04.009

    Article  Google Scholar 

  48. Weickenmeier J, Kurt M, Ozkaya E, Wintermark M, Butts Pauly K, Kuhl E (2018c) Magnetic resonance elastography of the brain: a comparison between pigs and humans. J Mech Behav Biomed Mater 77:702–710. https://doi.org/10.1016/j.jmbbm.2017.08.029

    Article  Google Scholar 

  49. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142. https://doi.org/10.1038/nrn3407

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a postdoctoral fellowship from the Belgian American Educational Foundation (BAEF) and a Duesberg postdoctoral fellowship from the University of Liège to Lise Noël and by the NSF Grant CMMI 1727268 Understanding Neurodegeneration across the Scales to Ellen Kuhl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kuhl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noël, L., Kuhl, E. Modeling neurodegeneration in chronic traumatic encephalopathy using gradient damage models. Comput Mech 64, 1375–1387 (2019). https://doi.org/10.1007/s00466-019-01717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01717-z

Keywords

Navigation