Skip to main content
Log in

Phase-field-based modelling of the gelation process of biopolymer droplets in 3D bioprinting

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Naturally derived hydrogels are the most common bioink material for droplet-based bioprinting. The mechanical stability of the printed construct and the cell viability are closely related to the gelation process of natural hydrogels, which is initiated by the coil-to-helix transition in a single polymer chain and followed by association of helices. In this study, a phase-field-based modelling approach is employed to simulate the gelation process of microdroplets. A thermo-viscoelastic model incorporating a phase-field variable is used to describe the deformation behaviour of hydrogels in the thermal-induced gelation process. In connection with the gelation kinetics, a new form of the bulk free energy density is proposed to include the free energies related to the mixture of macromolecules in the solution and the coil-to-helix transition. Using the proposed phase-field model, numerical simulations are performed to study the effects of the droplet size and the printing medium on the gelation process of microdroplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Blaeser A, Duarte Campos D F, Puster U, Richtering W, Stevens M M, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333

    Article  Google Scholar 

  2. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  Google Scholar 

  3. Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7(4):044102

    Article  Google Scholar 

  4. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  Google Scholar 

  5. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo J, Atala A (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  Google Scholar 

  6. Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 21(1–2):224–233

    Article  Google Scholar 

  7. Cui X, Breitenkamp K, Finn M, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312

    Article  Google Scholar 

  8. Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43(3):730–746

    Article  Google Scholar 

  9. Tanaka F (2003) Thermoreversible gelation driven by coil-to-helix transition of polymers. Macromolecules 36:5392–5405

    Article  Google Scholar 

  10. Papon P, Leblond J, Meijer P (2006) The physics of phase transitions: concepts and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  11. Hendriks J, Willem Visser C, Henke S, Leijten J, Saris D B F, Sun C, Lohse D, Karperien M (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5:1–10

    Article  Google Scholar 

  12. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 24(3):391–396

    Article  Google Scholar 

  13. Blaeser A, Duarte Campos D F, Weber M, Neuss S, Theek B, Fischer H, Jahnen-Dechent W (2013) Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs. Biores Open Access 2(5):374–84

    Article  Google Scholar 

  14. Robu A, Aldea R, Munteanu O, Neagu M, Stoicu-Tivadar L, Neagu A (2012) Computer simulations of in vitro morphogenesis. Biosystems 109(3):430–443

    Article  Google Scholar 

  15. Neagu A (2017) Role of computer simulation to predict the outcome of 3D bioprinting. J 3D Print Med 1(2):103–121

    Article  Google Scholar 

  16. Sun Y, Wang Q (2013) Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter 9(7):2172

    Article  Google Scholar 

  17. McCune M, Shafiee A, Forgacs G, Kosztin I (2014) Predictive modeling of post bioprinting structure formation. Soft Matter 10(11):1790

    Article  Google Scholar 

  18. Yang X, Sun Y, Wang Q (2013) A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng 135(7):71005

    Article  Google Scholar 

  19. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32(2):268–294

    Article  Google Scholar 

  20. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  Google Scholar 

  21. Boettinger W J, Warren J a, Beckermann C, Karma A (2002) Phase-field simulation of solidification. Annu Rev Mater Res 32(1):163–194

    Article  Google Scholar 

  22. Takaki T (2014) Phase-field modeling and simulations of dendrite growth. ISIJ Int 54(2):437–444

    Article  Google Scholar 

  23. Zhu J, Lu X, Balieu R, Kringos N (2016) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method. Mater Des 107:322–332

    Article  Google Scholar 

  24. Schlüter A, Kuhn C, Müller R, Tomut M, Trautmann C, Weick H, Plate C (2015) Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Contin Mech Thermodyn 49:977–988

    MathSciNet  MATH  Google Scholar 

  25. Miehe C, Hofacker M, Schänzel L-M, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elasticplastic solids. Comput Methods Appl Mech Eng 294:486–522

    Article  Google Scholar 

  26. Ben Said M, Selzer M, Nestler B, Braun D, Greiner C, Garcke H (2014) A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14):4033–4039

    Article  Google Scholar 

  27. Diewald F, Kuhn C, Heier M, Langenbach K, Horsch M, Hasse H, Müller R (2018) Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors. Comput Mater Sci 141(January):185–192

    Article  Google Scholar 

  28. Miller CA, Neogi P (2008) Interfacial phenomena-equilibrium and dynamic effects. CRC Press, London

    Google Scholar 

  29. Lubarda VA, Talke KA (2011) Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27(17):10705–10713

    Article  Google Scholar 

  30. Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59(3):131–144

    Article  Google Scholar 

  31. Fernandez E, Lopez D, Mijangos C, Duskova-Smrckova M, Ilavsky M, Dusek K (2008) Rheological and thermal properties of agarose aqueous solutions and hydrogels. J Polym Sci Part B: Polym Phys 46(3):322–328

    Article  Google Scholar 

  32. Doi M, Edwards S F (1988) The theory of polymer dynamics, vol 73. Oxford University Press, Oxford

    Google Scholar 

  33. Djabourov M, Nishinari K, Ross-Murphy SB (2013) Physical gels from biological and synthetic polymers. Cambridge University Press, Cambridge

  34. Hossain M, Possart G, Steinmann P (2009) A small-strain model to simulate the curing of thermosets. Comput Mech 43(6):769–779

    Article  MATH  Google Scholar 

  35. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19(3):228–239

    Article  MATH  Google Scholar 

  36. Djabourov M (1991) Gelation: a review. Polym Int 25(3):135–143

    Article  Google Scholar 

  37. Axelos M, Kolb M (1990) Crosslinked biopolymers: experimental evidence for percolation theory. Phys Rev Lett 64(12):1457–1460

    Article  Google Scholar 

  38. Fernandez E (2015) Rheological and thermal properties of agarose aqueous solutions and hydrogels. Polym Eng Sci 55(9):2174–2183

    Article  Google Scholar 

  39. De Gennes PG (1975) Critical dimensionality for a special percolation problem. J de Phys 36(11):1049–1054

    Article  Google Scholar 

  40. Stauffer D (1976) Gelation in concentrated critically branched polymer solutions: percolation scaling theory of intramolecular bond cycles. J Chem Soc Faraday Trans 2: Mol Chem Phys 72:1354–1364

    Article  Google Scholar 

  41. Tanaka N, Moriguchi H, Sato A, Kawai T, Shimba K, Jimbo Y, Tanaka Y (2016) Microcasting with agarose gel via degassed polydimethylsiloxane molds for repellency-guided cell patterning. RSC Adv 6(60):54754–54762

    Article  Google Scholar 

  42. Zhang M, Che Z, Chen J, Zhao H, Yang L, Zhong Z, Lu J (2011) Experimental determination of thermal conductivity of water-agar gel at different concentrations and temperatures. J Chem Eng Data 56:859–864

    Article  Google Scholar 

  43. Haemmerich D, Schutt DJ, dos Santos I, Webster JG, Mahvi DM (2005) Measurement of temperature-dependent specific heat of biological tissues. Physiol Meas 26(1):59–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyun Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Heider, Y., Ma, S. et al. Phase-field-based modelling of the gelation process of biopolymer droplets in 3D bioprinting. Comput Mech 63, 1187–1202 (2019). https://doi.org/10.1007/s00466-018-1644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1644-z

Keywords

Navigation