Skip to main content
Log in

On perfectly matched layers for discontinuous Petrov–Galerkin methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this article, several discontinuous Petrov–Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered in these derivations. Unlike with classical formulations used by Bubnov–Galerkin methods, with so-called ultraweak variational formulations, these two strategies in fact deliver different formulations in the PML region. One of the strategies, which is argued to be more physically natural, is employed for numerically solving two- and three-dimensional time-harmonic acoustic, elastic, and electromagnetic wave propagation problems, defined in unbounded domains. Through these numerical experiments, efficacy of the new DPG methods with PMLs is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moiola A, Spence EA (2014) Is the Helmholtz equation really sign-indefinite? SIAM Rev 56(2):274–312

    Article  MathSciNet  MATH  Google Scholar 

  2. Demkowicz L, Gopalakrishnan J (2015) Discontinuous Petrov–Galerkin (DPG) method. ICES report 15–20, The University of Texas at Austin

  3. Zitelli J, Muga I, Demkowicz L, Gopalakrishnan J, Pardo D, Calo VM (2011) A class of discontinuous Petrov–Galerkin methods. Part IV: the optimal test norm and time-harmonic wave propagation in 1D. J Comput Phys 230(7):2406–2432

    Article  MathSciNet  MATH  Google Scholar 

  4. Petrides S, Demkowicz LF (2017) An adaptive DPG method for high frequency time-harmonic wave propagation problems. Comput Math Appl 74(8):1999–2017

    Article  MathSciNet  MATH  Google Scholar 

  5. Ernst OG, Gander MJ (2012) Why it is difficult to solve Helmholtz problems with classical iterative methods? In: Graham IG, Hou TY, Lakkis O, Scheichl R (eds) Numerical analysis of multiscale problems, vol 83. Springer, Berlin, pp 325–363

    Chapter  MATH  Google Scholar 

  6. Li X, Xu X (2017) Domain decomposition preconditioners for the discontinuous Petrov–Galerkin method. ESAIM Math Model Numer 51(3):1021–1044

    Article  MathSciNet  MATH  Google Scholar 

  7. Keith B, Petrides S, Fuentes F, Demkowicz L (2017) Discrete least-squares finite element methods. Comput Methods Appl Mech Eng 327:226–255

    Article  MathSciNet  Google Scholar 

  8. Demkowicz L, Gopalakrishnan J (2010) A class of discontinuous Petrov–Galerkin methods. Part I: the transport equation. Comput Methods Appl Mech Eng 199(23–24):1558–1572

    Article  MathSciNet  MATH  Google Scholar 

  9. Demkowicz L, Gopalakrishnan J, Muga I, Zitelli J (2012) Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput Methods Appl Mech Eng 213:126–138

    Article  MathSciNet  MATH  Google Scholar 

  10. Demkowicz L, Li J (2013) Numerical simulations of cloaking problems using a DPG method. Comput Mech 51(5):661–672

    Article  MathSciNet  MATH  Google Scholar 

  11. Bui-Thanh T, Ghattas O (2014) A PDE-constrained optimization approach to the discontinuous Petrov–Galerkin method with a trust region inexact Newton-CG solver. Comput Methods Appl Mech Eng 278:20–40

    Article  MathSciNet  MATH  Google Scholar 

  12. Gopalakrishnan J, Muga I, Olivares N (2014) Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation. SIAM J Sci Comput 36(1):A20–A39

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalakrishnan J, Schöberl J (2015) Degree and wavenumber [in]dependence of Schwarz preconditioner for the DPG method. In: Kirby R, Berzins M, Hesthaven J (eds) Spectral and high order methods for partial differential equations ICOSAHOM 2014 (Lecture notes in computational science and engineering), vol 106. Springer, pp 257–265 (2015)

  14. Gopalakrishnan J, Sepulveda P (2017) A spacetime DPG method for acoustic waves. ArXiv e-print arXiv:1709.08268 [math.NA]

  15. Carstensen C, Demkowicz L, Gopalakrishnan J (2016) Breaking spaces and forms for the DPG method and applications including Maxwell equations. Comput Math Appl 72(3):494–522

    Article  MathSciNet  MATH  Google Scholar 

  16. Niemi AH, Bramwell J, Demkowicz L (2011) Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics. Comput Methods Appl Mech Eng 200(9–12):1291–1300

    Article  MathSciNet  MATH  Google Scholar 

  17. Bramwell J, Demkowicz L, Gopalakrishnan J, Weifeng Q (2012) A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses. Numer Math 122(4):671–707

    Article  MathSciNet  MATH  Google Scholar 

  18. Bramwell, J (2013) A discontinuous Petrov–Galerkin method for seismic tomography problems. Ph.D. thesis, The University of Texas at Austin, Austin, Texas, USA

  19. Gopalakrishnan J, Qiu W (2014) An analysis of the practical DPG method. Math Comput 83(286):537–552

    Article  MathSciNet  MATH  Google Scholar 

  20. Carstensen C, Demkowicz L, Gopalakrishnan J (2014) A posteriori error control for DPG methods. SIAM J Numer Anal 52(3):1335–1353

    Article  MathSciNet  MATH  Google Scholar 

  21. Keith B, Fuentes F, Demkowicz L (2016) The DPG methodology applied to different variational formulations of linear elasticity. Comput Methods Appl Mech Eng 309:579–609

    Article  MathSciNet  Google Scholar 

  22. Carstensen C, Hellwig F (2016) Low-order discontinuous Petrov–Galerkin finite element methods for linear elasticity. SIAM J Numer Anal 54(6):3388–3410

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuentes F, Keith B, Demkowicz L, Le Tallec P (2017) Coupled variational formulations of linear elasticity and the DPG methodology. J Comput Phys 348:715–731

    Article  MathSciNet  MATH  Google Scholar 

  24. Fuentes F, Demkowicz L, Wilder A (2017) Using a DPG method to validate DMA experimental calibration of viscoelastic materials. Comput Methods Appl Mech Eng 325:748–765

    Article  MathSciNet  Google Scholar 

  25. Demkowicz L, Gopalakrishnan J, Nagaraj S, Sepulveda P (2017) A spacetime DPG method for the Schrödinger equation. SIAM J Numer Anal 55(4):1740–1759

    Article  MathSciNet  MATH  Google Scholar 

  26. Bettess P (1977) Infinite elements. Int J Numer Methods Eng 11(1):53–64

    Article  MATH  MathSciNet  Google Scholar 

  27. Demkowicz L, Shen J (2006) A few new (?) facts about infinite elements. Comput Methods Appl Mech Eng 195(29):3572–3590

    Article  MathSciNet  MATH  Google Scholar 

  28. Keller JB, Grote MJ (2000) Exact nonreflecting boundary condition for elastic waves. SIAM J Numer Anal 60(3):803–819

    MathSciNet  MATH  Google Scholar 

  29. Engquist B, Majda A (1977) Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci USA 74(5):1765–1766

    Article  MathSciNet  MATH  Google Scholar 

  30. Engquist B, Majda A (1979) Radiation boundary conditions for acoustic and elastic wave calculations. Commun Pure Appl Math 32(3):313–357

    Article  MathSciNet  MATH  Google Scholar 

  31. Bayliss A, Turkel E (1980) Radiation boundary conditions for wave-like equations. Commun Pure Appl Math 33(6):707–725

    Article  MathSciNet  MATH  Google Scholar 

  32. Higdon RL (1987) Numerical absorbing boundary conditions for the wave equation. Math Comput 49(179):65–90

    Article  MathSciNet  MATH  Google Scholar 

  33. Guddati MN, Tassoulas JL (2000) Continued-fraction absorbing boundary conditions for the wave equation. J Comput Acoust 8(01):139–156

    Article  MathSciNet  MATH  Google Scholar 

  34. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200

    Article  MathSciNet  MATH  Google Scholar 

  35. Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett 7(13):599–604

    Article  Google Scholar 

  36. Chew WC, Jin JM, Michielssen E (1997) Complex coordinate stretching as a generalized absorbing boundary condition. Microw Opt Technol Lett 15(6):363–369

    Article  Google Scholar 

  37. Bramble J, Pasciak J (2007) Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math Comput 76(258):597–614

    Article  MathSciNet  MATH  Google Scholar 

  38. Collino F, Monk P (1998) The perfectly matched layer in curvilinear coordinates. SIAM J Sci Comput 19(6):2061–2090

    Article  MathSciNet  MATH  Google Scholar 

  39. Hohage T, Schmidt F, Zschiedrich L (2003) Solving time-harmonic scattering problems based on the pole condition II: convergence of the PML method. SIAM J Numer Anal 35(3):547–560

    Article  MathSciNet  MATH  Google Scholar 

  40. Lassas M, Somersalo E (1998) On the existence and convergence of the solution of PML equations. Computing 60(3):229–241

    Article  MathSciNet  MATH  Google Scholar 

  41. Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave-like equations. Appl Numer Math 27(4):533–557

    Article  MathSciNet  MATH  Google Scholar 

  42. Michler C, Demkowicz L, Kurtz J, Pardo D (2007) Improving the performance of perfectly matched layers by means of \(hp\)-adaptivity. Numer Methods Partial Differ Equ 23(4):832–858

    Article  MathSciNet  MATH  Google Scholar 

  43. Vaziri Astaneh A, Guddati MN (2016) A two-level domain decomposition method with accurate interface conditions for the Helmholtz problem. Int J Numer Methods Eng 107(1):74–90

    Article  MathSciNet  MATH  Google Scholar 

  44. Bramble J, Pasciak J, Trenev D (2010) Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math Comput 79(272):2079–2101

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen Z, Xiang X, Zhang X (2016) Convergence of the PML method for elastic wave scattering problems. Math Comput 85(302):2687–2714

    Article  MathSciNet  MATH  Google Scholar 

  46. Collino F, Tsogka C (2001) Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66(1):294–307

    Article  Google Scholar 

  47. Hastings FD, Schneider JB, Broschat SL (1996) Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J Acoust Soc Am 100(5):3061–3069

    Article  Google Scholar 

  48. Vaziri Astaneh A, Urban MW, Aquino W, Greenleaf JF, Guddati MN (2017) Arterial waveguide model for shear wave elastography: implementation and in vitro validation. Phys Med Biol 62:5473–5494

    Article  Google Scholar 

  49. Vaziri Astaneh A, Guddati MN (2017) Dispersion analysis of composite acousto-elastic waveguides. Compos Part B Eng 130:200–216

    Article  Google Scholar 

  50. Vaziri Astaneh A, Guddati MN (2016) Improved inversion algorithms for near-surface characterization. Geophys J Int 206(2):1410–1423

    Article  MATH  Google Scholar 

  51. Bao G, Wu H (2005) On the convergence of the solutions of PML equations for Maxwell’s equations. SIAM J Numer Anal 43:2121–2143

    Article  MathSciNet  MATH  Google Scholar 

  52. Teixeira FL, Chew WC (2001) Advances in the theory of perfectly matched layers. In: Chew WC, Jin JM, Michielssen E, Song J (eds) Fast and efficient algorithms in computational electromagnetics, chap. 7. Artech House, Boston, pp 283–346

    Google Scholar 

  53. Meza-Fajardo KC, Papageorgiou AS (2008) A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bull Seismol Soc Am 98(4):1811–1836

    Article  Google Scholar 

  54. Bécache E, Fauqueux S, Joly P (2003) Stability of perfectly matched layers, group velocities and anisotropic waves. J Comput Phys 188(2):399–433

    Article  MathSciNet  MATH  Google Scholar 

  55. Appelö D, Kreiss G (2006) A new absorbing layer for elastic waves. J Comput Phys 215(2):642–660

    Article  MathSciNet  MATH  Google Scholar 

  56. Duru K, Kreiss G (2012) A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation. Commun Comput Phys 11(5):1643–1672

    Article  MathSciNet  MATH  Google Scholar 

  57. Savadatti S, Guddati MN (2010) Absorbing boundary conditions for scalar waves in anisotropic media. Part 1: time harmonic modeling. J Comput Phys 229(19):6696–6714

    Article  MathSciNet  MATH  Google Scholar 

  58. Savadatti S, Guddati MN (2010) Absorbing boundary conditions for scalar waves in anisotropic media. Part 2: time-dependent modeling. J Comput Phys 229(18):6644–6662

    Article  MathSciNet  MATH  Google Scholar 

  59. Loh PR, Oskooi AF, Ibanescu M, Skorobogatiy M, Johnson SG (2009) Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Phys Rev E 79:065601

    Article  Google Scholar 

  60. Druskin V, Gütel S, Knizhnerman L (2016) Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Rev 58(1):90–116

    Article  MathSciNet  MATH  Google Scholar 

  61. Bermúdez A, Hervella-Nieto L, Prieto A, Rodríguez R (2007) An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J Comput Phys 223(2):469–488

    Article  MathSciNet  MATH  Google Scholar 

  62. Collino F, Monk PB (1998) Optimizing the perfectly matched layer. Comput Methods Appl Mech Eng 164(1–2):157–171

    Article  MathSciNet  MATH  Google Scholar 

  63. Chew W, Jin J (1996) Perfectly matched layers in the discretized space: an analysis and optimization. Electromagnetics 16(4):325–340

    Article  Google Scholar 

  64. Petropoulos PG (2003) An analytical study of the discrete perfectly matched layer for the time-domain Maxwell equations in cylindrical coordinates. IEEE Trans Antennas Propagat 51(7):1671–1675

    Article  Google Scholar 

  65. Pardo D, Demkowicz L, Torres-Verdín C, Michler C (2008) PML enhanced with a self-adaptive goal-oriented \(hp\)-finite element method: simulation of through-casing borehole resistivity measurements. SIAM J Sci Comput 30(6):2948–2964

    Article  MathSciNet  MATH  Google Scholar 

  66. Chen Z, Liu X (2005) An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J Numer Anal 43(2):645–671

    Article  MathSciNet  MATH  Google Scholar 

  67. Chen Z, Wu X (2008) An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer Math Theor Method Appl 1(2):113–137

    MathSciNet  MATH  Google Scholar 

  68. Guddati M, Lim K, Zahid M (2008) Perfectly matched discrete layers for unbounded domain modeling. In: Magoule F (ed) Computational methods for acoustics problems, Saxe-Coburg Publications, Scotland, pp 69–98

  69. Guddati MN, Lim KW (2006) Continued fraction absorbing boundary conditions for convex polygonal domains. Int J Numer Methods Eng 66(6):949–977

    Article  MathSciNet  MATH  Google Scholar 

  70. Vaziri Astaneh A, Guddati MN (2016) Efficient computation of dispersion curves for multilayered waveguides and half-spaces. Comput Methods Appl Mech Eng 300:27–46

    Article  MathSciNet  MATH  Google Scholar 

  71. Vaziriastaneh A (2016) On the forward and inverse computational wave propagation problems. Ph.D. thesis, North Carolina State University, Raleigh, North Carolina, USA

  72. Vaziri Astaneh A, Guddati MN (2017) WaveDisp: dispersion analysis software for immersed and embedded waveguides. http://www.WaveDisp.com

  73. Vaziri Astaneh A, Fuentes F, Mora J, Demkowicz L (2018) High-order polygonal discontinuous Petrov–Galerkin (PolyDPG) methods using ultraweak formulations. Comput Methods Appl Mech Eng 332:686–711

    Article  MathSciNet  Google Scholar 

  74. Matuszyk PJ, Demkowicz LF (2013) Parametric finite elements, exact sequences and perfectly matched layers. Comput Mech 51(1):35–45

    Article  MathSciNet  MATH  Google Scholar 

  75. Demkowicz L (2015) Various variational formulations and closed range theorem. ICES report 15-03, The University of Texas at Austin

  76. Gopalakrishnan J (2013) Five lectures on DPG methods. ArXiv e-prints arXiv:1306.0557 [math.NA]

  77. Roberts NV (2014) Camellia: a software framework for discontinuous Petrov–Galerkin methods. Comput Math Appl 68(11):1581–1604

    Article  MathSciNet  MATH  Google Scholar 

  78. Nagaraj S, Petrides S, Demkowicz L (2017) Construction of DPG Fortin operators for second order problems. Comput Math Appl 74(8):1964–1980

    Article  MathSciNet  MATH  Google Scholar 

  79. Bui-Thanh T, Demkowicz L, Ghattas O (2013) Constructively well-posed approximation methods with unity inf-sup and continuity constants for partial differential equations. Math Comput 82(284):1923–1952

    Article  MathSciNet  MATH  Google Scholar 

  80. Keith B, Demkowicz L, Gopalakrishnan J (2017) DPG* method. ArXiv e-prints arXiv:1710.05223 [math.NA]

  81. Keith B, Vaziri Astaneh A, Demkowicz L (2017) Goal-oriented adaptive mesh refinement for non-symmetric functional settings. ArXiv e-prints arXiv:1711.01996 [math.NA]

  82. Kausel E (2006) Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  83. Sarabandi K (2009) Dyadic Green’s function. http://www.eecs.umich.edu/courses/eecs730/lect/DyadicGF_W09_port.pdf

  84. Führer T (2018) Superconvergence in the DPG method with ultra-weak formulation. Comput Math Appl 75(5):1705–1718

    Article  MathSciNet  MATH  Google Scholar 

  85. Demkowicz L, Kurtz J, Pardo D, Paszyński M, Rachowicz W, Zdunek A (2007) Computing with \(hp\) finite elements. II. Frontiers: three dimensional elliptic and Maxwell problems with applications. Chapman & Hall, New York

    MATH  Google Scholar 

  86. Fuentes F, Keith B, Demkowicz L, Nagaraj S (2015) Orientation embedded high order shape functions for the exact sequence elements of all shapes. Comput Math Appl 70(4):353–458

    Article  MathSciNet  Google Scholar 

  87. Demkowicz L (2008) Polynomial exact sequences and projection-based interpolation with application to Maxwell equations In: Boffi D, Gastaldi L (ed) Mixed finite elements, compatibility conditions, and applications (Lecture notes in mathematics), vol. 1939, Springer, Berlin, pp 101–158

Download references

Acknowledgements

This work was partially supported with grants by NSF (DMS-1418822), AFOSR (FA9550-12-1-0484), and ONR (N00014-15-1-2496). The first author was also supported in part by the 2016 Peter O’Donnell, Jr. Postdoctoral Fellowship from The Institute for Computational Engineering and Sciences at The University of Texas at Austin. The second author was also supported in part by the 2017 Graduate School University Graduate Continuing Fellowship at The University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Vaziri Astaneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaziri Astaneh, A., Keith, B. & Demkowicz, L. On perfectly matched layers for discontinuous Petrov–Galerkin methods. Comput Mech 63, 1131–1145 (2019). https://doi.org/10.1007/s00466-018-1640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1640-3

Keywords

Navigation