Skip to main content
Log in

A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A beam formulation based on reproducing kernel particle method (RKPM) for the dynamic analysis of stiffened shell structures is presented in this paper. The kinematic description of a beam is obtained based on the Timoshenko beam theory. By using the principle of virtual power, the governing equations of a three-dimensional beam are derived. To obtain the numerical model of stiffened shell structures, two schemes are adopted: one is model stiffeners by the RKPM beam formulation, the other one is model the entire stiffened shell by the RKPM shell formulation. In the first scheme, the coupling model of RKPM shell and beam formulation is obtained by adding the corresponding quantities in their governing equations. In the second scheme, by determining the support domain of a stress point according to which component the stress point is located, the full shell simulation is achieved. The reliability and accuracy of those two schemes are verified by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cho S-R, Lee H-S (2009) Experimental and analytical investigations on the response of stiffened plates subjected to lateral collisions. Mar Struct 22(1):84–95

    Article  Google Scholar 

  2. Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  3. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) \(\delta \)-sph model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13):1526–1542

    Article  MathSciNet  MATH  Google Scholar 

  4. Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate sph modeling of viscous flows around bodies at low and moderate reynolds numbers. J Comput Phys 245:456–475

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  6. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25(2):102–116

    Article  MATH  Google Scholar 

  7. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    Article  MATH  Google Scholar 

  8. Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81(1):48–71

    MathSciNet  MATH  Google Scholar 

  9. Zhang LT, Wagner GJ, Liu WK (2003) Modelling and simulation of fluid structure interaction by meshfree and fem. Int J Numer Methods Biomed Eng 19(8):615–621

    MATH  Google Scholar 

  10. Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid-structure interaction problems with the SPH method. Comput Struct 87(11):721–734

    Article  Google Scholar 

  11. Zhang Z, Wang L, Silberschmidt VV (2017) Damage response of steel plate to underwater explosion: effect of shaped charge liner. Int J Impact Eng 103:38–49

    Article  Google Scholar 

  12. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free galerkin method. Int J Solids Struct 33(20–22):3057–3080

    Article  MATH  Google Scholar 

  13. Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49(18):2373–2393

    Article  Google Scholar 

  14. Maurel B, Combescure A (2008) An sph shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Methods Eng 76(7):949–971

    Article  MathSciNet  MATH  Google Scholar 

  15. Donning BM, Liu WK (1998) Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152(1–2):47–71

    Article  MATH  Google Scholar 

  16. Atluri S, Cho J, Kim H-G (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput Mech 24(5):334–347

    Article  MATH  Google Scholar 

  17. Wang D, Chen J-S (2006) A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. Comput Mech 39(1):83–90

    Article  MATH  Google Scholar 

  18. Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55–70

    Article  MATH  Google Scholar 

  19. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen J-S, Pan C (1996) A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory. J Appl Mech 63(4):862–868

    Article  MATH  Google Scholar 

  21. Guan P, Chi S, Chen J, Slawson T, Roth M (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  22. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  23. Günther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163(1–4):205–230

    Article  MathSciNet  MATH  Google Scholar 

  24. Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155(3–4):273–305

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng YX, Zhang AM, Ming FR (2017) A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis. Comput Mech https://doi.org/10.1007/s00466-017-1498-9

  26. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  27. Bathe K-J, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386

    Article  MATH  Google Scholar 

  28. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York

    Google Scholar 

  29. Holden J (1972) On the finite deflections of thin beams. Int J Solids Struct 8(8):1051–1055

    Article  MATH  Google Scholar 

  30. Liu WK, Belytschko T, Chen J-S (1988) Nonlinear versions of flexurally superconvergent elements. Comput Methods Appl Mech Eng 71(3):241–258

    Article  MATH  Google Scholar 

  31. Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116

    Article  MATH  Google Scholar 

  32. Crisfield MA (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81(2):131–150

    Article  MATH  Google Scholar 

  33. Bathe K-J, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14(7):961–986

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (U1430236) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y.X., Zhang, A.M., Li, S.F. et al. A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures. Comput Mech 63, 35–48 (2019). https://doi.org/10.1007/s00466-018-1583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1583-8

Keywords

Navigation