Skip to main content
Log in

Scalable parallel elastic–plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A domain decomposition method for large-scale elastic–plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton–Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic–plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic–plastic analysis, the proposed method exhibits better convergence performance than the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. ADVENTURE Project. URL http://adventure.sys.t.u-tokyo.ac.jp/

  2. Akiba H, Ohyama T, Shibata Y, Yuyama K, Katai Y, Takeuchi R, Hoshino T, Yoshimura S, Noguchi H, Gupta M, Gunnels JA, Austel V, Sabharwal Y, Garg R, Kato S, Kawakami T, Todokoro S, Ikeda J (2006) Large scale drop impact analysis of mobile phone using ADVC on Blue Gene/L. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing, pp 1–26

  3. An HB (2005) On convergence of the additive Schwarz preconditioned inexact Newton method. SIAM J Numer Anal 43(5):1850–1871

    Article  MathSciNet  Google Scholar 

  4. Badea L (1991) On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems. SIAM J Numer Anal 28(1):179–204

    Article  MathSciNet  Google Scholar 

  5. Bathe KJ, Cimento AP (1980) Some practical procedures for the solution of nonlinear finite element equations. Comput Methods Appl Mech Eng 22(1):59–85

    Article  Google Scholar 

  6. Bhardwaj M, Day D, Farhat C, Lesoinne M, Pierson K, Rixen D (2000) Application of the FETI method to ASCI problems–scalability results on 1000 processors and discussion of highly heterogeneous problems. Int J Numer Methods Eng 47(1–3):513–535

    Article  Google Scholar 

  7. Bhardwaj M, Pierson K, Reese G, Walsh T, Day D, Alvin K, Peery J, Farhat C, Lesoinne M (2002) Salinas: A scalable software for high-performance structural and solid mechanics simulations. In: Proceedings of the 2002 ACM/IEEE conference on supercomputing, pp 1–19

  8. Cai XC, Keyes DE (2002) Nonlinearly preconditioned inexact Newton algorithms. SIAM J Sci Comput 24(1):183–200

    Article  MathSciNet  Google Scholar 

  9. Crisfield M (1979) A faster modified Newton–Raphson iteration. Comput Methods Appl Mech Eng 20(3):267–278

    Article  MathSciNet  Google Scholar 

  10. Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801

    Article  Google Scholar 

  11. Dohrmann C (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258

    Article  MathSciNet  Google Scholar 

  12. Dolean V, Gander MJ, Kheriji W, Kwok F, Masson R (2016) Nonlinear preconditioning: How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J Sci Comput 38(6):A3357–A3380

    Article  MathSciNet  Google Scholar 

  13. Dryja M, Hackbusch W (1997) On the nonlinear domain decomposition method. BIT Numer Math 37(2):296–311

    Article  MathSciNet  Google Scholar 

  14. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method–part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544

    Article  Google Scholar 

  15. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    Article  MathSciNet  Google Scholar 

  16. Fish J (1992) The s-version of the finite element method. Comput Struct 43(3):539–547

    Article  Google Scholar 

  17. Geradin M, Idelsohn S, Hogge M (1981) Computational strategies for the solution of large nonlinear problems via quasi-Newton methods. Comput Struct 13(1):73–81

    Article  MathSciNet  Google Scholar 

  18. Gosselet P, Rey C (2006) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572

    Article  MathSciNet  Google Scholar 

  19. Hisada T, Noguchi H (1995) Foundation and application of nonlinear finite element method (in Japanese). Maruzen Publishing, Yokohama

    Google Scholar 

  20. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    Article  MathSciNet  Google Scholar 

  21. Kelley CT (2003) Solving nonlinear equations with Newton’s method. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718898

  22. Klawonn A, Lanser M, Rheinbach O (2014) Nonlinear FETI-DP and BDDC methods. SIAM J Sci Comput 36(2):A737–A765

    Article  MathSciNet  Google Scholar 

  23. Klawonn A, Lanser M, Rheinbach O, Uran M (2017) Nonlinear FETI-DP and BDDC methods: a unified framework and parallel results. SIAM J Sci Comput 39(6):C417–C451

    Article  MathSciNet  Google Scholar 

  24. Lui SH (1999) On Schwarz alternating methods for nonlinear elliptic PDEs. SIAM J Sci Comput 21(4):1506–1523

    Article  MathSciNet  Google Scholar 

  25. Mandel J (1993) Balancing domain decomposition. Commun Numer Methods Eng 9(3):233–241

    Article  MathSciNet  Google Scholar 

  26. Matthies H, Strang G (1979) The solution of nonlinear finite element equations. Int J Numer Methods Eng 14(11):1613–1626

    Article  MathSciNet  Google Scholar 

  27. Minami S, Yoshimura S (2010) Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid-structure interactions. Int J Numer Methods Fluids 64(10–12):1129–1147

    Article  MathSciNet  Google Scholar 

  28. Miyamura T, Noguchi H, Shioya R, Yoshimura S, Yagawa G (2002) Elastic-plastic analysis of nuclear structures with millions of DOFs using the hierarchical domain decomposition method. Nucl Eng Des 212(1–3):335–355

    Article  Google Scholar 

  29. Nayak GC, Zienkiewicz OC (1972) Note on the ‘alpha’-constant stiffness method for the analysis of non-linear problems. Int J Numer Methods Eng 4(4):579–582

    Article  Google Scholar 

  30. Negrello C, Gosselet P, Rey C, Pebrel J (2016) Substructured formulations of nonlinear structure problems—influence of the interface condition. Int J Numer Methods Eng 107(13):1083–1105

    Article  MathSciNet  Google Scholar 

  31. Nikishkov GP, Atluri SN (1994) An analytical-numerical alternating method for elastic-plastic analysis of cracks. Comput Mech 13(6):427–442

    Article  Google Scholar 

  32. Nishikawa H, Serizawa H, Murakawa H (2007) Actual application of FEM to analysis of large scale mechanical problems in welding. Sci Tech Weld Join 12(2):147–152

    Article  Google Scholar 

  33. Ogino M, Shioya R, Kanayama H (2008) An inexact balancing preconditioner for large-scale structural analysis. J Comput Sci Tech 2(1):150–161

    Article  Google Scholar 

  34. Ogino M, Shioya R, Kawai H, Yoshimura S (2005) Seismic response analysis of nuclear pressure vessel model with ADVENTURE system on the Earth Simulator. J Earth Simul 2:41–54

    Google Scholar 

  35. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual-domain decomposition method: application to structural problems with damage. Int J Multiscale Comput Eng 6(3):251–262

    Article  Google Scholar 

  36. Pyo CR, Okada H, Atluri SN (1995) An elastic–plastic finite element alternating method for analyzing wide-spread fatigue damage in aircraft structures. Comput Mech 16(1):62–68

    Article  Google Scholar 

  37. Smith B, Bjørstad P, Gropp W (2004) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Toselli A, Widlund O (2004) Domain decomposition methods: algorithms and theory. Springer, Berlin

    MATH  Google Scholar 

  39. Xu J, Zou J (1998) Some nonoverlapping domain decomposition methods. SIAM Rev 40(4):857–914

    Article  MathSciNet  Google Scholar 

  40. Yoshimura S, Shioya R, Noguchi H, Miyamura T (2002) Advanced general-purpose computational mechanics system for large-scale analysis and design. J Comput Appl Math 149(1):279–296

    Article  Google Scholar 

  41. Yumoto Y, Yusa Y, Okada H (2016) Element subdivision technique for coupling-matrix-free iterative s-version FEM and investigation of sufficient element subdivision. Mech Eng J 3(5):16–00361

    Google Scholar 

  42. Yumoto Y, Yusa Y, Okada H (2016) An s-version finite element method without generation of coupling stiffness matrix by using iterative technique. Mech Eng J 3(5):16-00001

    Article  Google Scholar 

  43. Yusa Y, Kataoka S, Kawai H, Yoshimura S (2012) Large-scale fracture mechanics analysis using partitioned iterative coupling algorithm (in Japanese). Trans Jpn Soc Mech Eng Ser A 78(791):966–975

    Article  Google Scholar 

  44. Yusa Y, Okada H, Yumoto Y (2017) Three-dimensional elastic analysis of a structure with holes using accelerated coupling-matrix-free iterative s-version FEM. Int J Comput Methods. https://doi.org/10.1142/S0219876218500366

    Article  MathSciNet  Google Scholar 

  45. Yusa Y, Yoshimura S (2013) Mixed-mode fracture mechanics analysis of large-scale cracked structures using partitioned iterative coupling method. Comput Model Eng Sci 91(6):445–461

    Google Scholar 

  46. Yusa Y, Yoshimura S (2014) Speedup of elastic–plastic analysis of large-scale model with crack using partitioned coupling method with subcycling technique. Comput Model Eng Sci 99(1):87–104

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by MEXT Post-K Project Priority Issue 6: Accelerated Development of Innovative Clean Energy Systems and by JSPS KAKENHI Grant Number JP16K05988. The authors would like to thank the members of the ADVENTURE Project for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Yusa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusa, Y., Okada, H., Yamada, T. et al. Scalable parallel elastic–plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner. Comput Mech 62, 1563–1581 (2018). https://doi.org/10.1007/s00466-018-1579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1579-4

Keywords

Navigation