Skip to main content
Log in

Application of an enriched FEM technique in thermo-mechanical contact problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton–Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Khoei AR, Shamloo A, Azami AR (2006) Extended finite element method in plasticity forming of powder compaction with contact friction. Int J Solids Struct 43:5421–5448

    Article  Google Scholar 

  2. Khoei AR, Mohammadnejad T (2011) Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comp Geotech 38:142–166

    Article  Google Scholar 

  3. Khoei AR, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically-driven cohesive fracture propagation in impermeable media with frictional natural faults; Numerical and experimental investigations. Int J Numer Methods Eng 104:439–468

    Article  MathSciNet  Google Scholar 

  4. Khoei AR, Vahab M, Hirmand M (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. Int J Fract 197:1–24

    Article  Google Scholar 

  5. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  Google Scholar 

  6. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  Google Scholar 

  7. Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70:10–17

    Article  MathSciNet  Google Scholar 

  8. Khoei AR, Haghighat E (2011) Extended finite element modeling of deformable porous media with arbitrary interfaces. Appl Math Model 35:5426–5441

    Article  MathSciNet  Google Scholar 

  9. Dolbow JE, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846

    Article  MathSciNet  Google Scholar 

  10. Khoei AR, Nikbakht M (2007) An enriched finite element algorithm for numerical computation of contact friction problems. Int J Mech Sci 49:183–199

    Article  Google Scholar 

  11. Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Meth Eng 76:1489–1512

    Article  MathSciNet  Google Scholar 

  12. Khoei AR, Vahab M (2014) A numerical contact algorithm in saturated porous media with the extended finite element method. Comput Mech 54:1089–1110

    Article  MathSciNet  Google Scholar 

  13. Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954

    Article  MathSciNet  Google Scholar 

  14. Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64

    Article  MathSciNet  Google Scholar 

  15. Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comp Methods Appl Mech Eng 268:417–436

    Article  MathSciNet  Google Scholar 

  16. Hirmand M, Vahab M, Khoei AR (2015) An augmented Lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal Des 107:28–43

    Article  Google Scholar 

  17. Duflot M (2008) The extended finite element method in thermoelastic fracture mechanics. Int J Numer Methods Eng 74:827–847

    Article  MathSciNet  Google Scholar 

  18. Zamani A, Eslami MR (2010) Implementation of the extended finite element method for dynamic thermoelastic fracture initiation. Int J Solids Struct 47:1392–1404

    Article  Google Scholar 

  19. Khoei AR, Moallemi S, Haghighat E (2012) Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique. Eng Fract Mech 96:701–723

    Article  Google Scholar 

  20. Shao Q, Bouhala L, Younes A, Núñez P, Makradi A, Belouettar S (2014) An XFEM model for cracked porous media: effects of fluid flow and heat transfer. Int J Fract 185:155–169

    Article  Google Scholar 

  21. Gill P, Davey K (2014) A thermomechanical finite element tool for Leak-before-Break analysis. Int J Numer Methods Eng 98:678–702

    Article  MathSciNet  Google Scholar 

  22. Yvonnet J, He QC, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68:2818–2825

    Article  Google Scholar 

  23. Yvonnet J, He QC, Zhu QZ, Shao JF (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mat Sci 50:1220–1224

    Article  Google Scholar 

  24. Gu ST, Monteiro E, He QC (2011) Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites. Compos Sci Technol 71:1209–1216

    Article  Google Scholar 

  25. Liu JT, Gu ST, Monteiro E, He QC (2014) A versatile interface model for thermal conduction phenomena and its numerical implementation by XFEM. Comput Mech 53:825–843

    Article  MathSciNet  Google Scholar 

  26. Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mat Sci 65:542–551

    Article  Google Scholar 

  27. Javili A, Kaessmair S, Steinmann P (2014) General imperfect interfaces. Comp Methods Appl Mech Eng 275:76–97

    Article  MathSciNet  Google Scholar 

  28. Jain A, Tamma KK (2010) Parabolic heat conduction specialized applications involving imperfect contact surfaces: local discontinuous Galerkin finite element method—Part 2. J Therm Stresses 33:344–355

    Article  Google Scholar 

  29. Gu ST, Liu JT, He QC (2014) The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int J Eng Sci 85:31–46

    Article  MathSciNet  Google Scholar 

  30. Curnier AR, Taylor RL (1982) A thermomechanical formulation and solution of lubricated contacts between deformable solids. J Lubrication Technol 104:109–117

    Article  Google Scholar 

  31. Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) Real contact mechanisms and finite element formulation–a coupled thermomechanical approach. Int J Numer Methods Eng 35:767–785

    Article  Google Scholar 

  32. Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comp Methods Appl Mech Eng 113:301–319

    Article  MathSciNet  Google Scholar 

  33. Zavarise G, Wriggers P, Schrefler B (1995) On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int J Numer Methods Eng 38:2929–2949

    Article  Google Scholar 

  34. Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75:551–573

    Article  Google Scholar 

  35. Rieger A, Wriggers P (2004) Adaptive methods for thermomechanical coupled contact problems. Int J Numer Methods Eng 59:871–894

    Article  Google Scholar 

  36. Zavarise G, Bacchetto A, Gänser HP (2005) Frictional heating in contact mechanics—a methodology to deal with high temperature gradients. Comput Mech 35:418–429

    Article  Google Scholar 

  37. Hansen G (2011) A Jacobian-free Newton Krylov method for mortar-discretized thermo-mechanical contact problems. J Comput Phys 230:6546–6562

    Article  MathSciNet  Google Scholar 

  38. Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact prblems. Comp Methods Appl Mech Eng 301:242–258

    Article  Google Scholar 

  39. Belghith S, Mezlini S, Belhadjsalah H, Ligier JL (2013) Thermo-mechanical modelling of the contact between rough surfaces using homogenisation technique. Mech Res Commun 53:57–62

    Article  Google Scholar 

  40. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical Mortar contact problems. Comp Methods Appl Mech Eng 274:192–212

    Article  MathSciNet  Google Scholar 

  41. Murashov MV, Panin SD (2015) Numerical modelling of contact heat transfer problem with work hardened rough surfaces. Int J Heat Mass Trans 90:72–80

    Article  Google Scholar 

  42. Grisvard P (2011) Elliptic problems in nonsmooth domains. Vol 69: classics in applied mathematics. SIAM, Philadelphia

    Book  Google Scholar 

  43. Khoei AR (2015) Extended finite element method: theory and applications. Wiley, New York

    MATH  Google Scholar 

  44. Le-Quang H, Bonnet G, He QC (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81:064203

    Article  Google Scholar 

  45. Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552

    Article  Google Scholar 

  46. Lipton R, Vernescu B (1996) Composites with imperfect interface. Proc R Soc Lond A Math Phys Eng Sci. https://doi.org/10.1098/rspa.1996.0018

    Article  MathSciNet  Google Scholar 

  47. Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 89:2261–2267

    Article  Google Scholar 

  48. Benveniste Y, Miloh T (1999) Neutral inhomogeneities in conduction phenomena. J Mech Phys Solids 47:1873–1892

    Article  MathSciNet  Google Scholar 

  49. Madhusudana CV, Fletcher LS (1986) Contact heat transfer—the last decade. AIAA J 24:510–523

    Article  MathSciNet  Google Scholar 

  50. Grosch KA (1963) The relation between the friction and visco-elastic properties of rubber. Proc R Soc Lond A 274:21–39

    Article  Google Scholar 

  51. Mase CW, Smith L (1987) Effect of frictional heating on the thermal, hydrologic, and mechanical response of a fault. J Geophys Res 92:6249–6272

    Article  Google Scholar 

  52. Braun OM, Steenwyk B, Warhadpande A, Persson BNJ (2016) On the dependency of friction on load: theory and experiment. Europhys Lett 113:56002

    Article  Google Scholar 

  53. Farhat C, Park KC, Yves DP (1991) An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput Methods Appl Mech Eng 85:349–365

    Article  Google Scholar 

  54. Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidation problems. Comput Methods Appl Mech Eng 106:51–63

    Article  MathSciNet  Google Scholar 

  55. Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Methods Eng 95:1053–1078

    Article  MathSciNet  Google Scholar 

  56. Nguyen MN, Bui TQ, Nguyen NT, Truong TT, Lich LV (2017) Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. Int J Mech Sci 134:370–386

    Article  Google Scholar 

  57. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khoei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoei, A.R., Bahmani, B. Application of an enriched FEM technique in thermo-mechanical contact problems. Comput Mech 62, 1127–1154 (2018). https://doi.org/10.1007/s00466-018-1555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1555-z

Keywords

Navigation