Skip to main content
Log in

Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of \(\sim \)1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7(3):293–301

    Article  Google Scholar 

  2. Arthurs CJ, Bishop MJ, Kay D (2012) Efficient simulation of cardiac electrical propagation using high order finite elements. J Comput Phys 231(10):3946–3962

    Article  MathSciNet  MATH  Google Scholar 

  3. Arthurs CJ, Bishop MJ, Kay D (2013) Efficient simulation of cardiac electrical propagation using high-order finite elements II: adaptive p-version. J Comput Phys 253:443–470

    Article  MathSciNet  MATH  Google Scholar 

  4. Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living heart project: a robust and integrative simulator for human heart function. Europ J Mech A/Solids 48(1):38–47

    Article  MathSciNet  Google Scholar 

  5. Bernabeu MO, Kay D (2011) Scalable parallel preconditioners for an open source cardiac electrophysiology simulation package. Procedia Comput Sci 4:821–830

    Article  Google Scholar 

  6. Cantwell CD, Yakovlev S, Kirby RM, Peters NS, Sherwin SJ (2014) High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: application to cardiac electrophysiology. J Comput Phys 257:813–829

    Article  MathSciNet  MATH  Google Scholar 

  7. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    Article  Google Scholar 

  8. Clayton RH, Panfilov AV (2008) A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog Biophys Mol Biol 96:19–43

    Article  Google Scholar 

  9. Deuflhard P, Erdmann B, Roitzsch R, Lines GT (2009) Adaptive finite element simulation of ventricular fibrillation dynamics. Comput Vis Sci 12:201–205

    Article  MathSciNet  Google Scholar 

  10. Göktepe S, Kuhl E (2009) Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Methods in Eng 79:156–178

    Article  MathSciNet  MATH  Google Scholar 

  11. Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Comput Mech 45(2–3):227–243

    Article  MathSciNet  MATH  Google Scholar 

  12. Hughes TJ (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  13. Hurtado DE, Castro S, Gizzi A (2016) Computational modeling of non-linear diffusion in cardiac electrophysiology: a novel porous-medium approach. Comput Methods in Appl Mech Eng 300:70–83

    Article  MathSciNet  Google Scholar 

  14. Hurtado DE, Henao D (2014) Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart. Comput Methods in Appl Mech Eng 273:238–254

    Article  MathSciNet  MATH  Google Scholar 

  15. Hurtado DE, Kuhl E (2014) Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart. Comput Methods in Biomech Biomed Eng 17(9):986–96

    Article  Google Scholar 

  16. Johnson C (2009) Numerical solution of partial differential equations by the finite element method. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  17. Krishnamoorthi S, Perotti LE, Borgstrom NP, Ajijola OA, Frid A, Ponnaluri AV, Weiss JN, Qu Z, Klug WS, Enni DB, Garfinkel A (2014) Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology. PLoS ONE 9(12):1–29

    Article  Google Scholar 

  18. Krishnamoorthi S, Sarkar M, Klug WS (2013) Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Int J Num Methods in Biomed Eng 29:1243–1266

    Article  MathSciNet  Google Scholar 

  19. Land S, Gurev V, Arens S, Augustin CM, Baron L, Blake R, Bradley C, Castro S, Crozier A, Favino M, Fastl TE, Fritz T, Gao H, Gizzi A, Griffith BE, Hurtado DE, Krause R, Luo X, Nash MP, Pezzuto S, Plank G, Rossi S, Ruprecht D, Seemann G, Smith NP, Sundnes J, Rice JJ, Trayanova NA, Wang D, Jenny Wang Z, Niederer SA (2015) Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc Math Phys Eng Sci Royal Soc 471(2184):20150641

    Article  Google Scholar 

  20. Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ (2010) A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog Biophys Mol Biol 102(2–3):136–155

    Article  Google Scholar 

  21. Pathmanathan P, Gray R (2014) Verification of computational models of cardiac electro-physiology. Int J Num Methods in Biomed Eng 30:525–544

  22. Pennacchio M (2004) The mortar finite element method for the cardiac “bidomain” model of extracellular potential. J Sci Comput 20(2):191–210

    Article  MathSciNet  MATH  Google Scholar 

  23. Pezzuto S, Hake J, Sundness J (2016) Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology. Int J Num Methods in Biomed Eng 32(10). doi:10.1002/cnm.2762

  24. Pullan AJ, Cheng LK, Buist ML (2005) Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  25. Sahli Costabal F, Concha FA, Hurtado DE, Kuhl E (2017) The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comp Methods in Appl Mech Eng 320:352–368

    Article  MathSciNet  Google Scholar 

  26. Sahli Costabal F, Hurtado DE, Kuhl E (2016) Generating Purkinje networks in the human heart. J Biomech 49:2455–2465

    Article  Google Scholar 

  27. Streeter DD, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium: I. Cavity and Wall Geometry. Circ Res 33:639–655

    Google Scholar 

  28. Taylor RL (2014) FEAP - finite element analysis program. http://www.ce.berkeley/feap

  29. Taylor RL, Beresford PJ, Wilson EL (1976) A nonconforming element for stress analysis. Int J Num Methods in Eng 10:1211–1219

    Article  MATH  Google Scholar 

  30. Vincent KP, Gonzales MJ, Gillette AK, Villongco CT, Pezzuto S, Omens JH, Holst MJ, McCulloch AD (2015) High-order finite element methods for cardiac monodomain simulations. Front Physiol 6(Aug):1–9

    Google Scholar 

  31. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Numerical and computer methods in structural mechanics. Academic Press, New York, pp 43–75

  32. Winslow RL, Trayanova NA, Geman D, Miller MI (2012) Computational medicine: translating models to clinical care. Sci Trans Med 4(158):158rv11–158rv11

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the VRI Puente P1614 grant from Pontificia Universidad Católica de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Hurtado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, D.E., Rojas, G. Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy. Comput Mech 61, 485–497 (2018). https://doi.org/10.1007/s00466-017-1473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1473-5

Keywords

Navigation