Skip to main content

Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

Abstract

We present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. A material stability analysis is used to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    The notched bar geometry is often used in problems involving void formation and growth [60, 61]. We use it here to exercise the strain localization capabilities of the present numerical framework, in loading regimes where voiding is generally not observed.

References

  1. 1.

    Ortiz M, Leroy Y, Needleman A (1987) A finite element method for localized failure analysis. Comput Methods Appl Mech Eng 61:189–214

    Article  MATH  Google Scholar 

  2. 2.

    Rittel D, Wang ZG, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96:075502(4)

    Article  Google Scholar 

  3. 3.

    Bronkhorst CA, Cerreta EK, Xue Q, Maudlin PJ, Mason TA, Gray GT III (2006) An experimental and numerial study of the localization behavior of tantalum and stainless steel. Int J Plast 22:1304–1335

    Article  MATH  Google Scholar 

  4. 4.

    Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72(12):1391–1433

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Plohr JN, Plohr BJ (2016) Numerical simulation of systems of shear bands in ductile metal with inclusions. AIP Adv 6(025):008

    Google Scholar 

  6. 6.

    Bronkhorst CA, Gray GT III, Addessio FL, Livescu V, Bourne NK, MacDonald SA, Withers PJ (2016) Response and representation of ductile damage under varying shock loading conditions in tantalum. J Appl Phys 119(085):103

    Google Scholar 

  7. 7.

    Mourad HM, Bronkhorst CA, Livescu V, Plohr JN, Cerreta EK (2017) Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations. Int J Plast 88:1–26

    Article  Google Scholar 

  8. 8.

    Wright TW, Batra RC (1985) The initiation and growth of adiabatic shear bands. Int J Plast 1:205–212

    Article  Google Scholar 

  9. 9.

    Anand L, Kim KH, Shawki TG (1987) Onset of shear localization in viscoplastic solids. J Mech Phys Solids 35:407–429

    Article  MATH  Google Scholar 

  10. 10.

    Shawki T, Clifton R (1989) Shear band formation in thermal viscoplastic materials. Mech Mater 8:13–43

    Article  Google Scholar 

  11. 11.

    Zhou M, Rosakis AJ, Ravichandran G (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44:981–1006

    Article  Google Scholar 

  12. 12.

    Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. 13.

    Osovski S, Rittel D, Venkert A (2013) The respective influence of microstructural and thermal softening on adiabatic shear localization. Mech Mater 56:11–22

    Article  Google Scholar 

  14. 14.

    Wang BF, Liu ZL, Wang XY, Li ZZ (2014) An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions. Mater Sci Eng A 610:301–308

    Article  Google Scholar 

  15. 15.

    Fish J, Belytschko T (1988) Elements with embedded lozalization zones for large deformation problems. Compos Struct 30:247–256

    Article  MATH  Google Scholar 

  16. 16.

    Xue Q, Gray GT III, Henrie BL, Maloy SA, Chen SR (2005) Influence of shock prestraining on the formation of shear localization in 304 stainless steel. Metall Mater Trans A 36:1471–1486

    Article  Google Scholar 

  17. 17.

    Belytschko T, Chiang HY, Plaskacz E (1994) High resolution two-dimensional shear band computations: imperfections and mesh dependence. Comput Methods Appl Mech Eng 119(1):1–15

    Article  MATH  Google Scholar 

  18. 18.

    Wilson E, Taylor R, Doherty W, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer methods in structural mechanics. Academic Press Inc., New York, pp 43–57

    Google Scholar 

  19. 19.

    Hadamard J (1903) Leçons sur la propagation des ondes et les équations de l’hydrodynamique. A. Hermann, Paris

    MATH  Google Scholar 

  20. 20.

    Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10:1–16

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Belytschko T, Fish J, Engelmann BE (1988) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70:59–89

    Article  MATH  Google Scholar 

  22. 22.

    Fish J, Belytschko T (1990) A finite element with a unidirectionally enriched strain field for localization analysis. Comput Methods Appl Mech Eng 78(2):181–200

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Armero F, Garikipati K (1995) Recent advances in the analysis and numerical simulation of strain localization in inelastic solids. In: Owen D, Oñate E, Hinton E (eds) Proceedings of the 4th international conference on computational plasticity: fundamentals and applications, pp 547–561

  25. 25.

    Oliver J (1995) Continuum modelling of strong discontinuities in solid mechanics using damage models. Comput Mech 17:49–61

    Article  MATH  Google Scholar 

  26. 26.

    Oliver J (1996a) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Int J Numer Methods Eng 39:3575–3600

    Article  MATH  Google Scholar 

  27. 27.

    Oliver J (1996b) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 2: numerical simulation. Int J Numer Methods Eng 39:3601–3623

    Article  Google Scholar 

  28. 28.

    Armero F, Garikipati K (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int J Solids Struct 33(20):2863–2885

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Armero F, Linder C (2008) New finite elements with embedded strong discontinuities in the finite deformation range. Comput Methods Appl Mech Eng 197:3138–3170

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Armero F, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160:119–141

    Article  MATH  Google Scholar 

  31. 31.

    Armero F, Kim J (2012) Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range. Int J Numer Methods Eng 91:1291–1330

    MathSciNet  Article  Google Scholar 

  32. 32.

    Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Sukumar N, Dolbow J, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196:189–206

    Article  Google Scholar 

  34. 34.

    Garikipati K, Hughes TJ (1998) A study of strain localization in a multiple scale framework the one-dimensional problem. Comput Methods Appl Mech Eng 159:193–222

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Garikipati K, Hughes T (2000) A variational multiscale approach to strain localization formulation for multidimensional problems. Comput Methods Appl Mech Eng 188:39–60

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Berger-Vergiat L, McAuliffe C, Waisman H (2014) Isogeometric analysis of shear bands. Comput Mech 54:503–521

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Li S, Liu WK, Qian D, Guduru PR, Rosakis AJ (2001) Dynamic shear band propagation and micro-structure of adiabatic shear band. Comput Methods Appl Mech Eng 191:73–92

    Article  MATH  Google Scholar 

  38. 38.

    Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 39:1213–1240

    Article  MATH  Google Scholar 

  39. 39.

    Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188:307–330

    Article  MATH  Google Scholar 

  40. 40.

    Oliver J, Huespe A, Sanchez P (2006) A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. Comput Methods Appl Mech Eng 195:4732–4752

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    Borja RI (2008) Assumed enhanced strain and the extended finite element methods: a unification of concepts. Comput Methods Appl Mech Eng 197:2789–2803

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    Wu JY, Li FB, Xu SL (2015) Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids. Comput Methods Appl Mech Eng 285:346–378

    MathSciNet  Article  Google Scholar 

  43. 43.

    Dodd B, Bai Y (2012) Adiabatic shear localization: frontiers and advances, 2nd edn. Elsevier, London

    Google Scholar 

  44. 44.

    Brun J, Cobbold P (1980) Strain heating and thermal softening in continental shear zones: a review. J Struct Geol 2(1–2):149–158

    Article  Google Scholar 

  45. 45.

    Molinari A, Clifton R (1987) Analytical characterization of shear localization in thermoviscoplastic materials. J Appl Mech 54:806–812

    Article  MATH  Google Scholar 

  46. 46.

    Medyanik SN, Liu WK, Li S (2007) On criteria for dynamic adiabatic shear band propagation. J Mech Phys Solids 55:1439–1461

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Rittel D, Landau P, Venkert A (2008) Dynamic recrystallization as a potential cause for adiabatic shear failure. Phys Rev Lett 101:165501(4)

    Article  Google Scholar 

  48. 48.

    Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech 53:51–54

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Mourad HM, Bronkhorst CA, Addessio FL, Cady CM, Brown DW, Chen SR, Gray GT III (2014) Incrementally objective implicit integration of hypoelastic–viscoplastic constitutive equations based on the mechanical threshold strength model. Comput Mech 53:941–955

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Methods Eng 15:1862–1867

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  52. 52.

    Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36:81–93

    Article  Google Scholar 

  53. 53.

    Follansbee PS, Huang JC, Gray GT III (1990) Low-temperature and high-strain-rate deformation of nickel and nickel–carbon alloys and analysis of the constitutive behavior according to an internal state variable model. Acta Metall Mater 38:1241–1254

  54. 54.

    Wang B, Liu Z, Wang B, Zhao S, Sun J (2014) Microstructural evolution in adiabatic shear band in the ultrafine-grained austenitic stainless steel processed by multi-axial compression. Mater Sci Eng A 611:100–107

    Article  Google Scholar 

  55. 55.

    Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  56. 56.

    Davies CHJ (1997) Growth of nuclei in a cellular automaton simulation of recrystallisation. Scr Mater 36:35–40

    Article  Google Scholar 

  57. 57.

    Mourad HM, Garikipati K (2006) Advances in the numerical treatment of grain-boundary migration: coupling with mass transport and mechanics. Comput Methods Appl Mech Eng 196:595–607

    Article  MATH  Google Scholar 

  58. 58.

    Ling X, Belytschko T (2009) Thermal softening induced plastic instability in rate-dependent materials. J Mech Phys Solids 57:788–802

    Article  MATH  Google Scholar 

  59. 59.

    Malvern L (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  60. 60.

    Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  61. 61.

    Huespe A, Needleman A, Oliver J, Sánchez P (2009) A finite thickness band method for ductile fracture analysis. Int J Plast 25:2349–2365

    Article  Google Scholar 

  62. 62.

    J ager P, Steinmann P, Kuhl E (2008) Modeling three-dimensional crack propagation—a comparison of crack path tracking strategies. Int J Numer Methods Eng 76:1328–1352

    MathSciNet  Article  MATH  Google Scholar 

  63. 63.

    Linder C, Armero F (2007) Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng 72:1391–1433

    MathSciNet  Article  MATH  Google Scholar 

  64. 64.

    Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418

    MathSciNet  Article  MATH  Google Scholar 

  65. 65.

    Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded under the DoD/DOE Joint Munitions Program (Dr. T. A. Mason program manager), and under the NNSA Advanced Simulation and Computing–Physics and Engineering Models (ASC–PEM) program (Dr. M. W. Schraad program manager). This support is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hashem M. Mourad.

Appendices

Appendix A: The \(\bar{\varvec{\mathsf {B}}}\) operator

Denoting by \(\varvec{\mathsf {B}}\) the array whose elements are the spatial gradients of the shape functions,

$$\begin{aligned} \mathsf {B}_{ijA}=\frac{\partial \mathsf {N}_{iA}}{\partial x_{j}}, \end{aligned}$$
(74)

we split this operator into symmetric and skew-symmetric components, which can be used to compute the rate of deformation tensor and the spin tensor, respectively, from the nodal velocities:

$$\begin{aligned} \varvec{\mathsf {B}}=\varvec{\mathsf {B}}^{\text {sym}}+\varvec{\mathsf {B}}^{\text {skw}}. \end{aligned}$$
(75)

Then, the symmetric part is split into volumetric and deviatoric parts,

$$\begin{aligned} \varvec{\mathsf {B}}^{\text {sym}}=\varvec{\mathsf {B}}^{\text {vol}}+\varvec{\mathsf {B}}^{\text {dev}}, \end{aligned}$$
(76)

and the deviatoric part is split further into shear and normal (diagonal) parts:

$$\begin{aligned} \varvec{\mathsf {B}}^{\text {dev}}=\varvec{\mathsf {B}}^{\text {shr}}+\varvec{\mathsf {B}}^{\text {nrm}}. \end{aligned}$$
(77)

Combining Eqs. (75)–(77), we obtain

$$\begin{aligned} \varvec{\mathsf {B}}=\varvec{\mathsf {B}}^{\text {vol}}+\varvec{\mathsf {B}}^{\text {shr}}+\varvec{\mathsf {B}}^{\text {nrm}}+\varvec{\mathsf {B}}^{\text {skw}}. \end{aligned}$$
(78)

The selective reduced integration technique of Ref. [64] is then used to alleviate volumetric locking due to (nearly) incompressible material response. Selective reduced integration is also used to mitigate shear locking in bending dominated problems (e.g. see Ref. [65]). This is achieved by defining the \(\bar{\varvec{\mathsf {B}}}\) operator,

$$\begin{aligned} \bar{\varvec{\mathsf {B}}}=\varvec{\mathsf {B}}_{0}^{\text {vol}}+\varvec{\mathsf {B}}_{0}^{\text {shr}}+\varvec{\mathsf {B}}^{\text {nrm}}+\varvec{\mathsf {B}}^{\text {skw}}, \end{aligned}$$
(79)

where, \(\varvec{\mathsf {B}}_{0}^{\text {vol}}\) and \(\varvec{\mathsf {B}}_{0}^{\text {shr}}\) are evaluated at the centroid of the four-noded quadrilateral elements used here, and treated as constant over the element. This is equivalent to the use of single-point quadrature for integration of volumetric and shear effects. Finally, to suppress hourglass modes that may pollute the solution as a result of using reduced quadrature rules, following Ref. [1], we redefine the \(\bar{\varvec{\mathsf {B}}}\) operator as follows:

$$\begin{aligned} \bar{\varvec{\mathsf {B}}}= & {} \left( 1-\epsilon _{\text {stb}}\right) \left[ \varvec{\mathsf {B}}_{0}^{\text {vol}}+\varvec{\mathsf {B}}_{0}^{\text {shr}}\right] +\epsilon _{\text {stb}}\left[ \varvec{\mathsf {B}}^{\text {vol}}+\varvec{\mathsf {B}}^{\text {shr}}\right] \nonumber \\&+\,\varvec{\mathsf {B}}^{\text {nrm}}+\varvec{\mathsf {B}}^{\text {skw}}, \end{aligned}$$
(80)

where \(\epsilon _{\text {stb}}\) is a small stabilization parameter. The value \(\epsilon _{\text {stb}}=0.05\) has been used throughout the present work. Note that setting \(\epsilon _{\text {stb}}=1\) recovers the conventional displacement-based formulation (78), whereas setting \(\epsilon _{\text {stb}}=0\) recovers the selective reduced integration technique (79).

Appendix B: Iterative solution of the traction continuity equation

The traction continuity condition (32) can be written

(81)

Our goal is to obtain the values of \(\alpha ^{\text {M}}\) and \(\varvec{m}\) at \(t= {{}t}_{(n+1)}\) by solving this nonlinear equation using a Newton scheme. We assume that the \(k\text {-th}\) iterates denoted by \({{}(\cdot )}_{(n+1)}^{(k)}\) are known. Using the truncated Taylor expansion \({{}\varvec{\sigma }}_{(n+1)}^{(k+1)} \approx {{}\varvec{\sigma }}_{(n+1)}^{(k)} + \delta \varvec{\sigma }\) in Eq. (81) yields

(82)

Then, the stress is linearized as follows:

$$\begin{aligned} \delta \sigma _{ij}= & {} \left[ \frac{\partial {{}\sigma _{ij}}_{(n+1)}^{(k)} }{\partial {{}\mathrm {\Delta }\mathrm {d}_{kl}}_{(n+{\frac{1}{2}})}^{(k)}}\, \frac{\partial {{}\mathrm {\Delta }\mathrm {d}_{kl}}_{(n+{\frac{1}{2}})}^{(k)}}{\partial {{}\mathrm {\Delta }\mathrm {l}_{pq}}_{(n+{\frac{1}{2}})}^{(k)}}\right. \nonumber \\&\left. +\, \frac{\partial {{}\sigma _{ij}}_{(n+1)}^{(k)} }{\partial {{}\mathrm {\Delta }\mathrm {w}_{kl}}_{(n+{\frac{1}{2}})}^{(k)}}\, \frac{\partial {{}\mathrm {\Delta }\mathrm {w}_{kl}}_{(n+{\frac{1}{2}})}^{(k)}}{\partial {{}\mathrm {\Delta }\mathrm {l}_{pq}}_{(n+{\frac{1}{2}})}^{(k)}}\right] \delta \mathrm {\Delta }\mathrm {l}_{pq}. \end{aligned}$$
(83)

This can be written in the more compact form,

$$\begin{aligned} \delta \sigma _{ij}= {{}\left[ \mathbb {C}_{ijkl}\,\mathbb {P}^{\text {Sym.}}_{klpq} +\mathbb {G}_{ijkl}\,\mathbb {P}^{\text {Skw.}}_{klpq} \right] }_{(n+1)}^{(k)} \delta \mathrm {\Delta }\mathrm {l}_{pq}, \end{aligned}$$
(84)

where the tangent stiffness moduli,

$$\begin{aligned} {{}\mathbb {C}_{ijkl}}_{(n+1)}^{(k)} \,{:=}\,\frac{ \partial {{}\sigma _{ij}}_{(n+1)}^{(k)} }{ \partial {{}\mathrm {\Delta }\mathrm {d}_{kl}}_{(n+{\frac{1}{2}})}^{(k)} }, \end{aligned}$$
(85)

are obtained through the stress update procedure (Algorithm 1), and

$$\begin{aligned} {{}\mathbb {G}_{ijkl}}_{(n+1)}^{(k)} \,{:=}\,\frac{ \partial {{}\sigma _{ij}}_{(n+1)}^{(k)} }{ \partial {{}\mathrm {\Delta }\mathrm {w}_{kl}}_{(n+{\frac{1}{2}})}^{(k)} } \end{aligned}$$
(86)

are obtained via application of the chain rule of differential calculus to Eq. (55). This process is straightforward but somewhat cumbersome, since it requires linearization of the exponential map (59). In addition,

$$\begin{aligned} \mathbb {P}^{\text {Sym.}}_{klpq}&\,{:=}\,\frac{1}{2}(\delta _{kp}\delta _{lq} + \delta _{kq}\delta _{lp} ), \end{aligned}$$
(87)
$$\begin{aligned} \mathbb {P}^{\text {Skw.}}_{klpq}&\,{:=}\,\frac{1}{2}(\delta _{kp}\delta _{lq} - \delta _{kq}\delta _{lp} ), \end{aligned}$$
(88)

are symmetric and skew symmetric projectors, respectively. Note that due to the symmetry of \(\mathbb {C}_{ijkl}\) and the skew symmetry of \(\mathbb {G}_{ijkl}\) with respect to the indices k and l, we have

$$\begin{aligned} \mathbb {C}_{ijkl}\,\mathbb {P}^{\text {Sym.}}_{klpq}&= \mathbb {C}_{ijpq}, \end{aligned}$$
(89)
$$\begin{aligned} \mathbb {G}_{ijkl}\,\mathbb {P}^{\text {Skw.}}_{klpq}&= \mathbb {G}_{ijpq}. \end{aligned}$$
(90)

Hence, Eq. (84) is written

$$\begin{aligned} \delta \sigma _{ij}= {{}\left[ \mathbb {C}_{ijkl} + \mathbb {G}_{ijkl}\right] }_{(n+1)}^{(k)} \delta \mathrm {\Delta }\mathrm {l}_{kl}, \end{aligned}$$
(91)

and the traction continuity condition (82) becomes

$$\begin{aligned}&{{}n_{i}}_{(n+1)} \left( {{}\left[ \mathbb {C}_{ijkl}^{\text {B}} + \mathbb {G}_{ijkl}^{\text {B}}\right] }_{(n+1)}^{(k)} \delta \mathrm {\Delta }\mathrm {l}_{kl}^{\text {B}}\right. \nonumber \\&\quad \left. -{{}\left[ \mathbb {C}_{ijkl}^{\text {M}} + \mathbb {G}_{ijkl}^{\text {M}}\right] }_{(n+1)}^{(k)} \delta \mathrm {\Delta }\mathrm {l}_{kl}^{\text {M}} \right) \nonumber \\&\quad = -{{}n_{i}}_{(n+1)} {{} \left[ \sigma _{ij}^{\text {B}}-\sigma _{ij}^{\text {M}}\right] }_{(n+1)}^{(k)} . \end{aligned}$$
(92)

Using Eq. (27) in the matrix region, we obtain

$$\begin{aligned} {{}\mathrm {\Delta }\mathrm {l}_{kl}^{\text {M}}}_{(n+{\frac{1}{2}})}^{(k)} = \left( \delta _{kr}\delta _{ls} - {{}\left[ \alpha ^{\text {M}}T_{kl} T_{rs}\right] }_{(n+1)}^{(k)} \right) \frac{\partial {{}\mathrm {\Delta }u_r}_{(n+1)}}{\partial {{}x_{s}}_{(n+{\frac{1}{2}})}}, \end{aligned}$$
(93)

where \({{}\mathrm {\Delta }u_r}_{(n+1)}={{}u_r}_{(n+1)}-{{}u_r}_{(n)}\) is the incremental displacement, and

$$\begin{aligned} {{}T_{kl}}_{(n+1)}^{(k)} = {{}m_{k}}_{(n+1)}^{(k)} {{}n_{l}}_{(n+1)}. \end{aligned}$$
(94)

Introducing the vector \(\hat{\varvec{m}}\), defined by

$$\begin{aligned} {{}\hat{m}_{k}}_{(n+1)}^{(k)} \,{:=}\,{{}\hat{\alpha }}_{(n+1)}^{(k)} {{}m_{k}}_{(n+1)}^{(k)}, \end{aligned}$$
(95)

in terms of its magnitude,

$$\begin{aligned} {{}\hat{\alpha }}_{(n+1)}^{(k)} \,{:=}\,{{}\alpha ^{\text {M}}}_{(n+1)}^{(k)} {{}T_{rs}}_{(n+1)}^{(k)} \frac{\partial {{}\mathrm {\Delta }u_r}_{(n+1)}}{\partial {{}x_{s}}_{(n+{\frac{1}{2}})}}, \end{aligned}$$
(96)

we write Eq. (93) in the form,

$$\begin{aligned} {{}\mathrm {\Delta }\mathrm {l}_{kl}^{\text {M}}}_{(n+{\frac{1}{2}})}^{(k)} = \frac{\partial {{}\mathrm {\Delta }u_k}_{(n+1)}}{\partial {{}x_{l}}_{(n+{\frac{1}{2}})}} - {{}\hat{m}_{k}}_{(n+1)}^{(k)}\,{{}n_{l}}_{(n+1)}, \end{aligned}$$
(97)

which is linearized as follows:

$$\begin{aligned} \delta \mathrm {\Delta }\mathrm {l}_{kl}^{\text {M}} = - \delta \hat{m}_{k}\,{{}n_{l}}_{(n+1)}. \end{aligned}$$
(98)

Similarly, using the relationship (29) between \(\alpha ^{\text {M}}\) and \(\alpha ^{\text {B}}\), we obtain for the localized region:

$$\begin{aligned} \delta \mathrm {\Delta }\mathrm {l}_{kl}^{\text {B}} = \left( \frac{h}{\omega }-1\right) \delta \hat{m}_{k}\,{{}n_{l}}_{(n+1)}. \end{aligned}$$
(99)

Substituting Eqs. (98)–(99) into the traction continuity condition (92), we arrive at the following linearized equation,

$$\begin{aligned} {{}A_{jk}}_{(n+1)}^{(k)} \delta \hat{m}_{k}= {{}g_{j}}_{(n+1)}^{(k)}, \end{aligned}$$
(100)

where

$$\begin{aligned} {{}A_{jk}}_{(n+1)}^{(k)}= & {} {{}n_{i}}_{(n+1)} \bigg [ \left( \frac{h}{\omega }-1\right) \,{{}\left[ \mathbb {C}_{ijkl}^{\text {B}} + \mathbb {G}_{ijkl}^{\text {B}}\right] }_{(n+1)}^{(k)}\nonumber \\&+\,{{}\left[ \mathbb {C}_{ijkl}^{\text {M}} + \mathbb {G}_{ijkl}^{\text {M}}\right] }_{(n+1)}^{(k)} \bigg ]{{}n_{l}}_{(n+1)}, \end{aligned}$$
(101)

and

$$\begin{aligned} {{}g_{j}}_{(n+1)}^{(k)} = -{{}n_{i}}_{(n+1)}{{}\left[ \sigma _{ij}^{\text {B}}-\sigma _{ij}^{\text {M}}\right] }^{(k)}. \end{aligned}$$
(102)

In each iteration of this scheme, \(\delta \hat{\varvec{m}}\) is computed using Eq. (100), and the update formula \({{}\hat{\varvec{m}}}_{(n+1)}^{(k+1)}={{}\hat{\varvec{m}}}_{(n+1)}^{(k)}+\delta \hat{\varvec{m}}\) is applied. Then, the variables \({{}\varvec{m}}_{(n+1)}^{(k+1)}\) and \({{}\alpha ^{\text {M}}}_{(n+1)}^{(k+1)}\) are obtained from \({{}\hat{\varvec{m}}}_{(n+1)}^{(k+1)}\) via Eqs. (95)–(96).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Mourad, H.M., Bronkhorst, C.A. et al. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions. Comput Mech 61, 3–18 (2018). https://doi.org/10.1007/s00466-017-1470-8

Download citation

Keywords

  • Strain localization
  • Adiabatic shear banding
  • Finite element method
  • Enhanced strain methods
  • Explicit dynamic analysis
  • Viscoplasticity
  • Dynamic recrystallization