Skip to main content
Log in

Improvements on a non-invasive, parameter-free approach to inverse form finding

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169–191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (\(L^{2}\))-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Acharjee S, Zabras N (2006) The continuum sensitivity method for computational design of three-dimensional deformation processes. Comput Methods Appl Mech Eng 195:6822–6842

    Article  MathSciNet  MATH  Google Scholar 

  2. Apel N (2014) Approaches to the description of anisotropic material behaviour at finite elastic and plastic deformations: theory and numerics. Ph.D. Thesis, Universitt of Stuttgart, Institut für Mechanik (Bauwesen) Lehrstuhl I

  3. Ask A, Denzer R, Menzel A, Ristinmaa M (2013) Inverse-motion-based form finding for quasi-incompressible finite electroelasticity. Int J Numer Methods Eng 94(6):554–572

    Article  MathSciNet  MATH  Google Scholar 

  4. Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44(3):247–267

    Article  MATH  Google Scholar 

  5. Chenot J, Bernacki M, Bouchard P, Fourment L, Hachem E, Perchat E (2014) Recent and future developments in finite element metal forming simulation. In: Ishikawa T, Mori K (eds) 11th international conference on technology of plasticity. Nagoya, pp 1–22

  6. Chenot J, Massoni E, Fourment L (1996) Inverse problems in finite element simulation of metal forming processes. Eng Comput 13(2–4):190–225

    Article  MATH  Google Scholar 

  7. Firl M, Wuechner R, Bletzinger K (2013) Regularization of shape optimization problems using FE-based parametrization. Struct Multidiscip Optim 47:507–521

    Article  MathSciNet  MATH  Google Scholar 

  8. Fourment L, Balan T, Chenot J (1996) Optimal design for non-steady-state metal forming processes—II. Application of shape optimization in forging. Int J Numer Methods Eng 39:51–65

    Article  MATH  Google Scholar 

  9. Germain S (2013) On inverse form finding for aniostropic materials in the logarithmic strain space. In: Schriftenreihe Technische Mechanik - Band 8, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Technische Mechanik

  10. Germain S, Landkammer P, Steinmann P (2013) On a recursive formulation for solving inverse form finding problems in isotropic elastoplasticity. Adv Model Simul Eng Sci 1(10):1–19

    Google Scholar 

  11. Govindjee S, Mihalic P (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136:47–57

    Article  MATH  Google Scholar 

  12. Govindjee S, Mihalic P (1998) Computational methods for inverse deformations in quasi incompressible finite elasticity. Int J Numer Methods Eng 43:821–838

    Article  MATH  Google Scholar 

  13. Guo Y, Batoz J, Naceur H, Bouabdallah S, Mercier F, Barlet O (2000) Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Comput Struct 78(1–3):133–148

    Article  Google Scholar 

  14. Haftka R, Grandhi R (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57(1):91–106

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrmann L (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102(5):749–756

    Google Scholar 

  16. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc A Math Phys Eng Sci 193(1033):281–297

    Article  MathSciNet  MATH  Google Scholar 

  17. Hinton E, Campbell J (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8(3):461–480

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim J, Kim N, Huh M (2000) Optimum blank design of an automobile sub-frame. J Mater Process Technol 101:31–43

    Article  Google Scholar 

  19. Kim N, Choi K, Chen J, Park Y (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25:157–168

    Article  MATH  Google Scholar 

  20. Kleinermann J, Ponthot J (2003) Parameter identification and shape/process optimization in metal forming simulation. J Mater Process Technol 139(1–3):521–526

    Article  MATH  Google Scholar 

  21. Landkammer P, Loderer A, Krebs E, Söhngen B, Steinmann P, Hausotte T, Kersting P, Biermann D, Willner K (2015) Experimental verification of a benchmark forming simulation. Key Eng Mater 639:251–258

    Article  Google Scholar 

  22. Landkammer P, Schulte R, Steinmann P, Merklein M (2016) A non-invasive form finding methods with application to metal forming. Prod Eng 10(1):93–102

    Article  Google Scholar 

  23. Landkammer P, Söhngen B, Steinmann P, Willner K (2017) On gradient-based optimization strategies for inverse problems in metal forming. GAMM-Mitteilungen (accepted)

  24. Landkammer P, Steinmann P (2016) A non-invasive heuristic approach to shape optimization. Comput Mech 57(2):169–191

    Article  MathSciNet  MATH  Google Scholar 

  25. Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee C, Huh H (1998) Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes. J Mater Process Technol 80–81:76–82

    Article  Google Scholar 

  27. Michaleris P, Tortorelli D, Vidal C (1994) Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticty. Int J Numer Methods Eng 37(14):2471–2499

    Article  MATH  Google Scholar 

  28. Naceur H, Delameziere A, Batoz J, Guo YQ, Knopf-Lenoir C (2004) Some improvements on the optimum process design in deep drawing using the inverse approach. J Mater Process Technol. doi:10.1016/j.matprotec.2003.11.015

    Google Scholar 

  29. Nocedal J, Wright S (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  30. Padmanabhan R, Oliveira M, Baptista A, Alves J, Menezes L (2009) Blank design for deep drawing parts using parametric nurbs surfaces. J Mater Process Technol 209(5–6):2402–2411

    Article  Google Scholar 

  31. Park M, Suh Y, Song S (2012) On an implementation of the strain gradient plasticity with linear finite elements and reduced integration. Finite Elem Anal Des 59:35–43

    Article  MathSciNet  Google Scholar 

  32. Park S, Yoon J, Yang D, Kim Y (1999) Optimum blank design in sheet metal forming by the deformation path iteration method. Int J Mech Sci 41(10):1217–1232. doi:10.1016/s0020-7403(98)00084-8

    Article  MATH  Google Scholar 

  33. Scherer M (2011) Regularizing constraints for mesh and shape optimization problems. Schriftenreihe Technische Mechanik - Band 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Technische Mechanik

  34. Scherer M, Denzer R, Steinmann P (2009) A fictitious energy approach for shape optimization. Int J Numer Methods Eng 82:269–302. doi:10.1002/nme.2764

    MathSciNet  MATH  Google Scholar 

  35. Schmitt O, Friederich J, Riehl S, Steinmann P (2015) On the formulation and implementation of geometric and manufacturing constraints in node-based shape optimization. Struct Multidiscip Optim 53(4):881–892. doi:10.1007/s00158-016-1595-y

    Article  MathSciNet  Google Scholar 

  36. Sellier M (2005) Fixed point iterative schemes for initial shape identification. Tech Mech 25(3–4):208–217

    Google Scholar 

  37. Steinmann P (1997) Modellierung und Numerik duktiler kristalliner Werkstoffe. Habilitationsschrift, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F 97/1, Univeristät Hannover

  38. Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  39. Stupkiewicz S, Lengiewicz J, Korelc J (2010) Sensitivity analysis for frictional contact problems in the augmented langrangian formulation. Comput Methods Appl Mech Eng 199:2165–2176

    Article  MATH  Google Scholar 

  40. Tortorelli D, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Probl Eng 1(1):71–105

    Article  Google Scholar 

  41. Wallin M, Ristinmaa M (2015) Topology optimization utilizing inverse motion based form finding. Comput Methods Appl Mech Eng 289:316–331

    Article  MathSciNet  Google Scholar 

  42. Yao T, Choi K (1989) 3-D shape optimal design and automatic finite element regridding. Int J Numer Methods Eng 28:369–384

    Article  MATH  Google Scholar 

  43. Zienkiewicz O, Zhu J (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of the collaborative research project Manufacturing of complex functional components with variants by using a new metal forming process—Sheet-Bulk Metal Forming (SFB/TR73: www.tr-73.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Landkammer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landkammer, P., Caspari, M. & Steinmann, P. Improvements on a non-invasive, parameter-free approach to inverse form finding. Comput Mech 61, 433–447 (2018). https://doi.org/10.1007/s00466-017-1468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1468-2

Keywords

Navigation