Skip to main content
Log in

General framework for dynamic large deformation contact problems based on phantom-node X-FEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Kobayashi S, Kobayashi S, Oh S-I, Altan T (1989) Metal forming and the finite-element method, vol 4. Oxford University Press on Demand, Oxford

    Google Scholar 

  2. Ambrosio JAC (2003) Contact and impact models for vehicle crashworthiness simulation. Int J Crashworthiness 8(1):73–86

    Article  Google Scholar 

  3. Lim CT, Shim VPW, Ng YH (2003) Finite-element modeling of the ballistic impact of fabric armor. Int J Impact Eng 28(1):13–31

    Article  Google Scholar 

  4. Yao H, Gao H (2006) Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J Mech Phys Solids 54(6):1120–1146

    Article  MATH  Google Scholar 

  5. Liu F, Borja RI (2009) An extended finite element framework for slow-rate frictional faulting with bulk plasticity and variable friction. Int J Numer Anal Meth Geomech 33(13):1535–1560

    Article  MATH  Google Scholar 

  6. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190(51):6825–6846

    Article  MathSciNet  MATH  Google Scholar 

  7. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5):601–620

    Article  MATH  Google Scholar 

  9. Khoei AR, Shamloo A, Azami AR (2006) Extended finite element method in plasticity forming of powder compaction with contact friction. Int J Solids Struct 43(18):5421–5448

    Article  MATH  Google Scholar 

  10. Khoei AR, Nikbakht M (2007) An enriched finite element algorithm for numerical computation of contact friction problems. Int J Mech Sci 49(2):183–199

    Article  Google Scholar 

  11. Elguedj T, Gravouil A, Combescure A (2007) A mixed augmented lagrangian-extended finite element method for modelling elastic-plastic fatigue crack growth with unilateral contact. Int J Numer Meth Eng 71(13):1569–1597

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(10):1489–1512

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37):2456–2471

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirmand M, Vahab M, Khoei AR (2015) An augmented lagrangian contact formulation for frictional discontinuities with the extended finite element method. Finite Elem Anal Des 107:28–43

    Article  Google Scholar 

  15. Geniaut S, Massin P, Moës N (2007) A stable 3D contact formulation using X-FEM. Eur J Comput Mech 16(2):259–275

    Article  MATH  Google Scholar 

  16. Nistor I, Guiton MLE, Massin P, Moës N, Geniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78(12):1407–1435

    Article  MATH  Google Scholar 

  17. Liu F, Borja RI (2010) Finite deformation formulation for embedded frictional crack with the extended finite element method. Int J Numer Methods Eng 82(6):773

    MathSciNet  MATH  Google Scholar 

  18. Khoei AR, Mousavi SMT (2010) Modeling of large deformation-large sliding contact via the penalty X-FEM technique. Comput Mater Sci 48(3):471–480

    Article  Google Scholar 

  19. Song J-H, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67(6):868–893

    Article  MATH  Google Scholar 

  20. Nistor I, Pantalé O, Caperaa S (2008) Numerical implementation of the extended finite element method for dynamic crack analysis. Adv Eng Softw 39(7):573–587

    Article  Google Scholar 

  21. Chau-Dinh T, Zi G, Lee P-S, Rabczuk T, Song J-H (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92:242–256

    Article  Google Scholar 

  22. de Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. Wiley, Hoboken

    Google Scholar 

  23. Khoei AR (2014) Extended finite element method: theory and applications. wiley

  24. Menouillard T, Rethore J, Moes N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3):447–474

    Article  MathSciNet  MATH  Google Scholar 

  25. de Borst R, Remmers JJC, Needleman A (2006) Mesh-independent discrete numerical representations of cohesive-zone models. Eng Fract Mech 73(2):160–177

    Article  Google Scholar 

  26. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  MathSciNet  MATH  Google Scholar 

  27. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29):2777–2799

  28. Talebi H, Samaniego C, Samaniego E, Rabczuk T (2012) On the numerical stability and mass-lumping schemes for explicit enriched meshfree methods. Int J Numer Methods Eng 89(8):1009–1027

    Article  MathSciNet  MATH  Google Scholar 

  29. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17(5):679–706

    Article  MATH  Google Scholar 

  30. Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. mixed methods and conserving integration. Comput Mech 48(4):461–475

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Broumand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broumand, P., Khoei, A.R. General framework for dynamic large deformation contact problems based on phantom-node X-FEM. Comput Mech 61, 449–469 (2018). https://doi.org/10.1007/s00466-017-1463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1463-7

Keywords

Navigation