Skip to main content

Advertisement

Log in

An integrated computational framework for simulating the failure response of carbon fiber reinforced polymer composites

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new computational framework is introduced for the automated finite element (FE) modeling of fiber reinforced composites and simulating their micromechanical behavior. The proposed methodology relies on a new microstructure reconstruction algorithm that implements the centroidal Voronoi tessellation (CVT) to generate an initial uniform distribution of fibers with desired volume fraction and size distribution in a repeating unit cell of the composite. The genetic algorithm (GA) is then employed to optimize locations of fibers such that they replicate the target spatial arrangement. We also use a non-iterative mesh generation algorithm, named conforming to interface structured adaptive mesh refinement (CISAMR), to create FE models of the CFRPC. The CVT–GA–CISAMR framework is then employed to investigate the appropriate size of the composite’s representative volume element. We also study the strength and failure mechanisms in the CFRPC subject to varying uniaxial and mixed-mode loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(\varOmega \) :

Macroscopic open domain of a CFRPC panel

\(\varGamma \) :

Macroscopic domain boundary of a CFRPC panel

\(\mathbf n _{\text {M}}\) :

Outward unit vector normal to \(\partial \varOmega \)

\(\varGamma _\mathbf{u }\) :

Dirichlet boundary conditions region

\(\varGamma _\mathbf{t }\) :

Neumann boundary conditions region

\(\varTheta \) :

Microscopic open domain of a repeating unit cell (RUC) of the CFRPC

\(\varLambda \) :

Microscopic domain boundary of an RUC of the composite

\(\mathbf n _{\text {m}}\) :

Outward unit vector normal to \(\varLambda \)

\(\mathbf u _{\text {M}}\) :

Displacement field a the macro scale

\(\mathbf u _{\text {m}}\) :

Displacement field a the micro scale

\(\xi \) :

Ratio of the microscopic to macroscopic length scales

\(\mathbb {C}\) :

Elasticity tensor

\({\varvec{\sigma }}_{\text {M}}\) :

Macroscopic stress tensor

\({\varvec{\varepsilon }}_{\text {M}}\) :

Macroscopic strain tensor

\({\varvec{\sigma }}_{\text {m}}\) :

Microscopic stress tensor

\({\varvec{\varepsilon }}_{\text {m}}\) :

Microscopic strain tensor

\(\varPhi _{\text {M}}\) :

Macroscopic free energy density

\(\varPhi _{\text {m}}\) :

Microscopic free energy density

\(\omega \) :

Damage variable

\(\chi ^t\) :

Internal state variable tracking the magnitude of damage

\(\varPhi ^{\text {in}}_{\text {m}}\) :

Energy threshold associated with the initiation of damage

\(p_1, p_2\) :

Scalar parameters determining the shape of the damage surface

\(\dot{\kappa }\) :

Damage consistency parameter

\(\delta \) :

Effective opening displacement along cohesive interface

\(\beta \) :

Mode mixity parameter

\(\delta _{n}\) :

Normal displacement of the cohesive interface

\(\delta _{s}\) :

Sliding displacement of the cohesive interface

\(\varPhi _c\) :

Cohesive free energy

\(\sigma _{c}\) :

Maximum cohesive normal traction

\(\delta _{c}\) :

Characteristic opening displacement

t :

Effective traction

\(\delta _{max}\) :

Maximum effective opening displacement

\(t_{max}\) :

Maximum effective traction

\(\zeta _c\) :

Cohesive viscous regularization parameter

\(f_{\text {sd}}(r)\) :

Fibers radii r distribution function

\(N_{\text {sd}}\) :

Mean value of the probability distribution of r

\(S_{\text {sd}}\) :

Standard deviation of the probability distribution of r

\(f_\text {nn}(r)\) :

Nearest neighbor distance function

\(f_\text {rd}(r)\) :

Radial distribution function

\(N_{\text {nn}}\) :

Mean value of the probability distribution of nearest neighbor distances

\(S_{\text {nn}}\) :

Standard deviation of probability distribution of nearest neighbor distances

\(\rho \) :

Average number of fibers in a unit area

N :

Total number of fibers

\(n_i(r)\) :

Number of fiber centroids located in an annulus with radius r and thickness dr

\(V_f\) :

Target volume fraction

References

  1. Freeman WT (1993) The use of composites in aircraft primary structure. Compos Eng 3(7):767–775

    Article  Google Scholar 

  2. Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Chung D (2012) Carbon fiber composites. Butterworth-Heinemann, Boston

    Google Scholar 

  4. Klier T, Linn J (2010) Corporate average fuel economy standards and the market for new vehicles. Resources for the future discussion paper, pp 10–68

  5. National Research Council (US) (2008) Committee on integrated computational materials engineering. In: Pollock TM, Allison JE, Backman DG, Boyce C, Gersh M, Holm EA, LeSar R, Long M, Powell IV AC, Schirra JJ, Whitis DD, Woodward Ch (eds) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. National Academies Press, Washington

  6. LLorca J, González C, Molina-Aldareguía JM, Segurado J, Seltzer R, Sket F, Rodríguez M, Sádaba S, Muñoz R, Canal LP (2011) Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 23(44):5130–5147

    Article  Google Scholar 

  7. Cox B, Yang Q (2006) In quest of virtual tests for structural composites. Science 314(5802):1102–1107

    Article  Google Scholar 

  8. Buffiere JY, Maire E, Verdu C, Cloetens P, Pateyron M, Peix G, Baruchel J (1997) Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography. Mater Sci Eng A 234:633–635

    Article  Google Scholar 

  9. Kastner J, Harrer B, Degischer HP (2011) High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys. Mater Charact 62(1):99–107

    Article  Google Scholar 

  10. Martin-Herrero J, Germain Ch (2007) Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon 45(6):1242–1253

    Article  Google Scholar 

  11. Sheidaei A, Baniassadi M, Banu M, Askeland P, Pahlavanpour M, Kuuttila N, Pourboghrat F, Drzal LT, Garmestani H (2013) 3-D microstructure reconstruction of polymer nano-composite using FIB–SEM and statistical correlation function. Compos Sci Technol 80:47–54

    Article  Google Scholar 

  12. Xu H, Dikin DA, Burkhart C, Chen W (2014) Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85:206–216

    Article  Google Scholar 

  13. Xu H, Li Y, Brinson C, Chen W (2014) A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 136(5):051007

    Article  Google Scholar 

  14. Xu H, Liu R, Choudhary A, Chen W (2015) A machine learning-based design representation method for designing heterogeneous microstructures. J Mech Des 137(5):051403

    Article  Google Scholar 

  15. Kumar NC, Matouš K, Geubelle PH (2008) Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Comput Mater Sci 42(2):352–367

    Article  Google Scholar 

  16. Jiang Z, Chen W, Burkhart C (2013) Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization. J Microsc 252(2):135–148

    Article  Google Scholar 

  17. Liu X, Shapiro V (2015) Random heterogeneous materials via texture synthesis. Comput Mater Sci 99:177–189

    Article  Google Scholar 

  18. Beasley D, Martin RR, Bull DR (1993) An overview of genetic algorithms: part 1. fundamentals. Univ Comput 15:58–58

    Google Scholar 

  19. Matouš K, Lepš M, Zeman J, Šejnoha M (2000) Applying genetic algorithms to selected topics commonly encountered in engineering practice. Comput Methods Appl Mech Eng 190(13):1629–1650

    Article  MATH  Google Scholar 

  20. Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57(1):495

    Article  MathSciNet  Google Scholar 

  21. Lee HG, Brandyberry M, Tudor A, Matouš K (2009) Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography. Phys Rev E 80(6):061301

  22. Olchawa W, Piasecki R (2015) Speeding up of microstructure reconstruction: II. Application to patterns of poly-dispersed islands. Comput Mater Sci 98:390–398

    Article  Google Scholar 

  23. Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 56(5):942–948

    Article  Google Scholar 

  24. Torquato S (2013) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    MATH  Google Scholar 

  25. Segurado J, LLorca J (2006) Computational micromechanics of composites: the effect of particle spatial distribution. Mech Mater 38(8):873–883

    Article  Google Scholar 

  26. Ayyar A, Crawford GA, Williams JJ, Chawla N (2008) Numerical simulation of the effect of particle spatial distribution and strength on tensile behavior of particle reinforced composites. Comput Mater Sci 44(2):496–506

    Article  Google Scholar 

  27. Yu M, Zhu P, Ma Y (2013) Effects of particle clustering on the tensile properties and failure mechanisms of hollow spheres filled syntactic foams: a numerical investigation by microstructure based modeling. Mater Des 47:80–89

    Article  Google Scholar 

  28. Soghrati S, Liang B (2016) Automated analysis of microstructural effects on the failure response of heterogeneous adhesives. Int J Solids Struct 81:250–261

    Article  Google Scholar 

  29. Vaughan TJ, McCarthy CT (2010) A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos Sci Technol 70(2):291–297

    Article  Google Scholar 

  30. Wang W, Dai Y, Zhang C, Gao Xiaosheng, Zhao Meiying (2016) Micromechanical modeling of fiber-reinforced composites with statistically equivalent random fiber distribution. Materials 9(8):624

    Article  Google Scholar 

  31. Ghosh S, Nowak Z, Lee K (1997) Quantitative characterization and modeling of composite microstructures by voronoi cells. Acta Mater 45(6):2215–2234

    Article  Google Scholar 

  32. Swaminathan S, Ghosh S, Pagano NJ (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J Compos Mater 40(7):583–604

    Article  Google Scholar 

  33. Fritzen F, Böhlke T (2011) Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites. Int J Solids Struct 48(5):706–718

    Article  MATH  Google Scholar 

  34. Roberts AP (1997) Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys Rev E 56(3):3203

    Article  Google Scholar 

  35. Jiang Z, Chen W, Burkhart C (2012) A hybrid approach to 3D porous microstructure reconstruction via Gaussian random field. In: ASME 2012 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 1033–1042

  36. Hinrichsen EL, Feder J, Jøssang T (1986) Geometry of random sequential adsorption. J Stat Phys 44(5–6):793–827

    Article  Google Scholar 

  37. Baniassadi M, Mortazavi B, Hamedani H, Garmestani H, Ahzi S, Fathi-Torbaghan M, Ruch D, Khaleel M (2012) Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM. Comput Mater Sci 51(1):372–379

    Article  Google Scholar 

  38. Tabei SA, Sheidaei A, Baniassadi M, Pourboghrat F, Garmestani H (2013) Microstructure reconstruction and homogenization of porous Ni-YSZ composites for temperature dependent properties. J Power Sources 235:74–80

    Article  Google Scholar 

  39. Sebdani MM, Baniassadi M, Jamali J, Ahadiparast M, Abrinia K, Safdari M (2015) Designing an optimal 3D microstructure for three-phase solid oxide fuel cell anodes with maximal active triple phase boundary length (TPBL). Int J Hydrogen Energy 40(45):15585–15596

    Article  Google Scholar 

  40. Kumar H, Briant CL, Curtin WA (2006) Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech Mater 38(8):818–832

    Article  Google Scholar 

  41. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput Aided Des 45(1):65–76

    Article  Google Scholar 

  42. Collins BC, Matous K, Rypl D (2010) Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites. Int J Multiscale Comput Eng 8(5):489–507

  43. Pellegrino C, Galvanetto U, Schrefler BA (1999) Numerical homogenization of periodic composite materials with non-linear material components. Int J Numer Meth Eng 46(10):1609–1637

    Article  MATH  Google Scholar 

  44. Dell’Isola F, Steigmann D, Della Corte A (2015) Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl Mech Rev 67(6):060804

    Article  Google Scholar 

  45. Zhang Y, Hughes TJR, Bajaj CL (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5):405–415

    Article  MATH  Google Scholar 

  46. Liang XH, Zhang YJ (2014) An Octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range. Eng Comput 30(2):211–222

    Article  Google Scholar 

  47. Shewchuk JR (2002) Delaunay refinement algorithms for triangular mesh generation. Comput Geom 22(1):21–74

    Article  MATH  MathSciNet  Google Scholar 

  48. Yerry MA, Shephard MS (1984) Automatic three-dimensional mesh generation by the modified-Octree technique. Int J Numer Meth Eng 20(11):1965–1990

    Article  MATH  Google Scholar 

  49. Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation by the finite Octree technique. Int J Numer Meth Eng 32(4):709–749

    Article  MATH  Google Scholar 

  50. Lo SH (1985) A new mesh generation scheme for arbitrary planar domains. Int J Numer Meth Eng 21(8):1403–1426

    Article  MATH  Google Scholar 

  51. Lo SH (1991) Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach. Comput Struct 39(5):501–511

    Article  MATH  Google Scholar 

  52. Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52

    Article  MATH  Google Scholar 

  53. Baehmann PL, Wittchen SL, Shephard MS, Grice KR, Yerry MA (1987) Robust, geometrically based, automatic two-dimensional mesh generation. Int J Numer Meth Eng 24(6):1043–1078

    Article  MATH  Google Scholar 

  54. Babuska I, Melnek JM (1997) The partition of unity method. Int J Numer Meth Eng 40(4):727–758

    Article  MATH  MathSciNet  Google Scholar 

  55. Oden TJ, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153(1–2):117–126

    Article  MATH  MathSciNet  Google Scholar 

  56. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  MATH  Google Scholar 

  57. Simone A, Duarte CA, Van der Giessen E (2006) A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Meth Eng 67(8):1122–1145

    Article  MATH  MathSciNet  Google Scholar 

  58. Soghrati S, Aragón AM, Duarte CA, Geubelle PH (2012) An interface-enriched generalized finite element method for problems with discontinuous gradient fields. Int J Numer Meth Eng 89(8):991–1008

    Article  MATH  Google Scholar 

  59. Soghrati S, Geubelle PH (2012) A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries. Comput Methods Appl Mech Eng 217–220:46–57

    Article  MATH  MathSciNet  Google Scholar 

  60. Soghrati S (2014) Hierarchical interface-enriched finite element method: an automated technique for mesh-independent simulations. J Comput Phys 275:41–52

    Article  MATH  MathSciNet  Google Scholar 

  61. Soghrati S, Ahmadian H (2015) 3D hierarchical interface-enriched finite element method: implementation and applications. J Comput Phys 299:45–55

    Article  MATH  MathSciNet  Google Scholar 

  62. Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning scheme for heaviside enriched XFEM. Comput Mech 54(5):1357–1374

    Article  MATH  MathSciNet  Google Scholar 

  63. Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modell Simul Mater Sci Eng 17(4):043001

    Article  Google Scholar 

  64. Hinton M J, Kaddour A S, Soden P D (2004) Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise. Elsevier, New York

    Google Scholar 

  65. González C, LLorca J (2007) Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos Sci Technol 67(13):2795–2806

    Article  Google Scholar 

  66. Hobbiebrunken T, Hojo M, Adachi T, De Jong C, Fiedler B (2006) Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Compos A Appl Sci Manuf 37(12):2248–2256

    Article  Google Scholar 

  67. Vaughan TJ, McCarthy CT (2011) Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos Sci Technol 71(3):388–396

    Article  Google Scholar 

  68. Yang L, Yan Y, Liu Y, Ran Z (2012) Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos Sci Technol 72(15):1818–1825

    Article  Google Scholar 

  69. Totry E, González C, LLorca J (2008) Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos Sci Technol 68(3):829–839

    Article  MATH  Google Scholar 

  70. Puck A, Schürmann H (2002) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 62(12):1633–1662

    Article  Google Scholar 

  71. Davila CG, Camanho PP, Rose CA (2005) Failure criteria for FRP laminates. J Compos Mater 39(4):323–345

    Article  Google Scholar 

  72. Romanowicz M (2010) Progressive failure analysis of unidirectional fiber-reinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading. Compos A Appl Sci Manuf 41(12):1829–1838

    Article  Google Scholar 

  73. Canal LP, Segurado J, LLorca J (2009) Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear. Int J Solids Struct 46(11):2265–2274

    Article  MATH  Google Scholar 

  74. Tang Z, Wang C, Yu Y (2015) Failure response of fiber-epoxy unidirectional laminate under transverse tensile/compressive loading using finite-volume micromechanics. Compos B Eng 79:331–341

    Article  Google Scholar 

  75. Melro AR, Camanho PP, Pires FMA, Pinho ST (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part II-micromechanical analyses. Int J Solids Struct 50(11):1906–1915

    Article  Google Scholar 

  76. Okabe T, Nishikawa M, Toyoshima H (2011) A periodic unit-cell simulation of fiber arrangement dependence on the transverse tensile failure in unidirectional carbon fiber reinforced composites. Int J Solids Struct 48(20):2948–2959

    Article  Google Scholar 

  77. Melro AR, Camanho PP, Pires FMA, Pinho ST (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part I-constitutive modelling. Int J Solids Struct 50(11):1897–1905

    Article  Google Scholar 

  78. Bienias J, Debski H, Surowska B, Sadowski T (2012) Analysis of microstructure damage in carbon/epoxy composites using FEM. Comput Mater Sci 64:168–172

    Article  Google Scholar 

  79. Romanowicz M (2012) A numerical approach for predicting the failure locus of fiber reinforced composites under combined transverse compression and axial tension. Comput Mater Sci 51(1):7–12

    Article  Google Scholar 

  80. Soni G, Singh R, Mitra M, Falzon BG (2014) Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (\(\text{ M }^{2}\)RVE). Int J Solids Struct 51(2):449–461

    Article  Google Scholar 

  81. Sharma R, Bhagat AR, Mahajan P (2014) Finite element analysis for mechanical characterization of 4D inplane carbon/carbon composite with imperfect microstructure. Latin Am J Solids Struct 11(2):170–184

    Article  Google Scholar 

  82. Qiang D, Vance F, Max G (1999) Centroidal voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676

    Article  MATH  MathSciNet  Google Scholar 

  83. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7(3):205–230

    Article  MathSciNet  Google Scholar 

  84. Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive mesh refinement technique for modeling heterogeneous materials. Comput Mech 125:24–40

    Google Scholar 

  85. Soghrati Soheil, Xiao Fei, Nagarajan Anand (2017) A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems. Comput Mech 59(4):667–684

    Article  MathSciNet  Google Scholar 

  86. Matouš K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56(4):1511–1533

    Article  MATH  MathSciNet  Google Scholar 

  87. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44(9):1267–1282

    Article  MATH  Google Scholar 

  88. Matouš K, Geubelle PH (2006) Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations. Int J Numer Methods Eng 65:190–223

    Article  MATH  MathSciNet  Google Scholar 

  89. Gao YF, Bower AF (2004) A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Modell Simul Mater Sci Eng 12(3):453

    Article  Google Scholar 

  90. Hill R (1985) On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. In: Mathematical proceedings of the cambridge philosophical society, vol 98. Cambridge University Press, Cambridge, pp 579–590

  91. Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Meth Eng 54(8):1235–1260

    Article  MATH  Google Scholar 

  92. Chaboche JL, Feyel F, Monerie Y (2001) Interface debonding models: a viscous regularization with a limited rate dependency. Int J Solids Struct 38(18):3127–3160

    Article  MATH  Google Scholar 

  93. Espinosa HD, Dwivedi S, Lu HC (2000) Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws. Comput Methods Appl Mech Eng 183(3):259–290

  94. Bansal PP, Ardell AJ (1972) Average nearest-neighbor distances between uniformly distributed finite particles. Metallography 5(2):97–111

  95. Hanisch KH, Stoyan D (1981) Stereological estimation of the radial distribution function of centres of spheres. J Microsc 122(2):131–141

    Article  Google Scholar 

  96. Matsuda T, Ohno N, Tanaka H, Shimizu T (2003) Effects of fiber distribution on elastic-viscoplastic behavior of long fiber-reinforced laminates. Int J Mech Sci 45(10):1583–1598

    Article  MATH  Google Scholar 

  97. Torquato S, Stell G (1982) Microstructure of two-phase random media. I. The n-point probability functions. J Chem Phys 77(4):2071–2077

    Article  MathSciNet  Google Scholar 

  98. Torquato S (2002) Statistical description of microstructures. Annu Rev Mater Res 32(1):77–111

    Article  Google Scholar 

  99. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B (Methodological) 39:172–212

    MathSciNet  Google Scholar 

  100. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, Reading

    MATH  Google Scholar 

  101. Goldberg DE (2002) The design of innovation: lessons from and for competent genetic algorithms. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  102. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Article  Google Scholar 

  103. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  104. Min S, Nishiwaki S, Kikuchi N (2000) Unified topology design of static and vibrating structures using multiobjective optimization. Comput Struct 75(1):93–116

    Article  Google Scholar 

  105. Totry E, Molina-Aldareguía JM, González C, LLorca J (2010) Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos Sci Technol 70(6):970–980

    Article  Google Scholar 

  106. Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM J Appl Math and Mech 9(1):49–58

    Article  MATH  Google Scholar 

  107. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  108. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3(4):732–734

    Article  Google Scholar 

  109. Hill R (1964) Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. J Mech Phys Solids 12(4):199–212

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported the Air Force Office of Scientific Research (AFOSR) under grant number FA9550-17-1-0350 and also in part by the Ohio State University Simulation Innovation and Modeling Center (SIMCenter) through support from Honda R&D Americas, Inc.. The authors also acknowledge the allocation of computing time from the Ohio Supercomputer Center (OSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Soghrati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, H., Liang, B. & Soghrati, S. An integrated computational framework for simulating the failure response of carbon fiber reinforced polymer composites. Comput Mech 60, 1033–1055 (2017). https://doi.org/10.1007/s00466-017-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1457-5

Keywords

Navigation