Abstract
This paper proposes a description of a granular medium as a stochastic heterogeneous continuum medium. The heterogeneity of the material properties field recreates the heterogeneous stress field in a granular medium. The stochastic approach means that only statistical information, easily available, is required to construct the model. The heterogeneous continuum model is Calibrated with respect to discrete simulations of a set of railway ballast samples. As they are continuum-based, the equilibrium equations can be solved on a large scale using a parallel implementation of an explicit time discretization scheme for the Finite Element Method. Simulations representative of the influence on the environment of the passage of a train on a ballasted railway track clearly show the influence of the heterogeneity. These simulations seem to correlate well with previously unexplained overly damped measurements in the free field.
This is a preview of subscription content, access via your institution.






















References
Agnolin I, Roux JN (2008) On the elastic moduli of three-dimensional assemblies of spheres: characterization and modeling of fluctuations in the particle displacement and rotation. Int J Solids Struct 45(3–4):1101–1123. doi:10.1016/j.ijsolstr.2007.07.016
Ahmed S, Harkness J, Le Pen L, Powrie W, Zervos A (2015) Numerical modelling of railway ballast at the particle scale. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2424
Al Shaer A, Duhamel D, Sab K, Foret G, Schmitt L (2008) Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains. J Sound Vibr 316:211–233. doi:10.1016/j.jsv.2008.02.055
Alart P, Iceta D, Dureisseix D (2012) A nonlinear domain decomposition formulation with application to granular dynamics. Comput Methods Appl Mech Eng 205–208:59–67. doi:10.1016/j.cma.2011.04.024
Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492–1505
Andrianov IV, Awrejcewicz J, Weichert D (2010) Improved continuous models for discrete media. Math Prob Eng 2010:986242
Arnst M, Ghanem RG (2008) Probabilistic equivalence and stochastic model reduction in multiscale analysis. Comp Methods Appl Mech Eng 197:3584–3592. doi:10.1016/j.cma.2008.03.016
Azéma E, Radjaï F (2010) Stress-strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81(5):051304
Azéma E, Radjai F, Dubois F (2013) Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys Rev E 87(6):062203
Azéma E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41:729–741. doi:10.1016/j.mechmat.2009.01.021
Bagi K (2003) Statistical analysis of contact force components in random granular assemblies. Granul Matter 5(1):45–54. doi:10.1007/s10035-002-0123-5
Bagi K (2006) Analysis of microstructural strain tensors for granular assemblies. Int J Solids Struct 43(10):3166–3184. doi:10.1016/j.ijsolstr.2005.07.016
Bardet JP, Vardoulakis I (2001) The asymetry of stress in granular media. Int J Solids Struct 38(2):353–367. doi:10.1016/S0020-7683(00)00021-4
Blum L, Stell G (1979) Polydisperse systems. I. Scattering function for polydisperse fluids of hard or permeable spheres. J Chem Phys 71(1):42–46. doi:10.1063/1.438088
Blum L, Stell G (1980) Erratum: polydisperse systems. I. Scattering function for polydisperse fluids of hard or permeable spheres. J Chem Phys 72(3):2212. doi:10.1063/1.439328
Brandt H (1955) A study of the speed of sound in porous granular media. J Appl Mech 22:479–486
Cambou B, Chaze M, Dedecker F (2000) Change of scale in granular materials. Eur J Mech A Solids 19(6):999–1014. doi:10.1016/S0997-7538(00)01114-1
Chang CS, Chao SJ, Chang Y (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J Solids Struct 32(14):1989–2008. doi:10.1016/0020-7683(94)00225-L
Chang CS, Lun M (1992) Elastic material constants for isotropic granular solids with particle rotation. Int J Solids Struct 29(8):1001–1018. doi:10.1016/0020-7683(92)90071-Z
Cohen G (2001) Higher-order numerical methods for transient wave equations. Scientific computation. Springer, Berlin
Connolly DP, Kouroussis G, Laghrouche O, Ho CL, Forde MC (2014) Benchmarking railway vibrations—track, vehicle, ground and building effects. Constr Build Mater doi:10.1016/j.conbuildmat.2014.07.042.
Coopersmith SN, Liu CH, Majumdar S, Narayan O, Witten TA (1996) Model for force fluctuations in bead packs. Phys Rev E 53(5):4673–4685. doi:10.1103/PhysRevE.53.4673
Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47
d’Aguanno B, Klein R (1992) Integral-equation theory of polydisperse Yukawa systems. Phys Rev A 46(12):7652–7656. doi:10.1103/PhysRevA.46.7652
de Abreu Corrêa L, Cottereau R, Bongini E, Costa d’Aguiar S, Faure B, Voivret C (2016) Impact of the heterogeneity of the ballast on the dynamical behavior of the ballast-soil system. In: Proceedings of the CM3 conference on computational transport. Springer [Submitted for publication]
de Saxcé G, Fortin J, Millet O (2004) About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech Mater 36:1175–1184. doi:10.1016/j.mechmat.2003.01.002
Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48(4):803–808. doi:10.1115/1.3157738
Drescher A, de Josselin de, Jong G (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20(5):337–340. doi:10.1016/0022-5096(72)90029-4
Durán O, Kruyt NP, Luding S (2010) Analysis of three-dimensional micro-mechanical strain formulations for granular materials: evaluation of accuracy. Int J Solids Struct 47(2):251–260. doi:10.1016/j.ijsolstr.2009.09.035
Eloy C, Clément E (1997) Stochastic aspects of the force network in a regular granular piling. J Phys I 7(12):1541–1558. doi:10.1051/jp1:1997155
Evesque P (2004) Distribution of contact forces in a homogeneous granular material of identical spheres under triaxial compression. Poudr Grains 14(4):82–95
Festa G, Vilotte JP (2005) The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys J Int 161(3):789–812. doi:10.1111/j.1365-246X.2005.02601.x
GDR MiDi (2004) On dense granular flows. Eur Phys J E Soft Matter 14(4):341–65. doi:10.1140/epje/i2003-10153-0
Goddard JD (1990) Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc R Soc A 430(1878):105–131. doi:10.1098/rspa.1990.0083
Goldhirsch I, Goldenberg C (2002) On the microscopic foundations of elasticity. Eur Phys J E 9(3):245–251. doi:10.1140/epje/i2002-10073-5
Griffith WL, Triolo R, Tampere AL (1986) Analytical structure function of a polydisperse Percus–Yevick fluid with Schulz (gamma) distributed diameters. Phys Rev A 33(3):2197–2200. doi:10.1103/PhysRevA.33.2197
Grigoriu M (1998) Simulation of stationary non-gaussian translation processes. J Eng Mech 124(2):121–126
Guerin N (1996) Approche expérimentale et numérique du comportement du ballast des voies ferrées. Ph.D. thesis, École nationale des ponts et chaussées [In French]
Guillot L, Aubry L, Le Piver F, Mariotti C, Sèbe O, Thauvin E, Odonbaatar C, Ulziibat M, Demberel S, Sukhbaatar S (2014) Numerical simulation of seismic wave propagation: site effects. Chocs 45:29–36
Han F, Cui J, Yu Y (2010) The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials. Int J Numer Methods Eng 84:972–988. doi:10.1002/nme.2928
Heckl M, Hauck G, Wettschureck R (1996) Structure-borne sound and vibration from rail traffic. J Sound Vib 193(1):175–184. doi:10.1006/jsvi.1996.0257
Howell DW, Behringer RP, Veje CT (1999) Fluctuations in granular media. Chaos 9(3):559–572. doi:10.1063/1.166430
Hutter K, Rajagopal KR (1994) On flows of granular materials. Cont Mech Thermodyn 6:81–139
Indraratna B, Salim W, Rujikiatkamjorn C (2011) Advanced rail geotechnology. Ballasted track. CRC Press, Boca Raton
INNOTRACK D2.1.3 (2009) First phase on the modelling of poor quality sites. Tech. Rep. Project no. tip5 ct-2006-031415, European commission—sixth framework program
Jehel P, Cottereau R (2015) On damping created by heterogeneous yielding in the numerical analysis of nonlinear RC frame elements. Comp Struct 154:192–203. doi:10.1016/j.compstruc.2015.03.001
Jenkins J, Johnson D, La Ragione L, Makse H (2005) Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J Mech Phys Solids 53(1):197–225. doi:10.1016/j.jmps.2004.06.002
Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–30. doi:10.1038/nature04801
Kincaid JM, Weis JJ (1977) Radial distribution function of a hard-sphere solid. Mol Phys 34(4):931–938. doi:10.1080/00268977700102241
Komatitsch D (2005) The spectral-element method in seismology. Geophys Monogr Ser 157(55):205–227. doi:10.1029/157GM13
Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31(6):407–429. doi:10.1016/S0167-6636(99)00010-1
Lado F (1996) Integral equation theory of polydisperse colloidal suspensions using orthogonal polynomial expansions. Phys Rev E 54(4):4411–4419. doi:10.1103/PhysRevE.54.4411
Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9(1):112–147
Leibig M (1994) Model for the propagation of sound in granular materials. Phys Rev E 49(2):1647–1656. doi:10.1103/PhysRevE.49.1647
Lim WL, McDowell GR (2005) Discrete element modelling of railway ballast. Granul Matter 7(1):19–29. doi:10.1007/s10035-004-0189-3
Liu CH, Nagel SR, Schecter DA, Coopersmith SN, Majumdar S, Narayan O, Witten TA (1995) Force fluctuations in bead packs. Science 269(5223):513–515. doi:10.1126/science.269.5223.513
Logiciel de mécanique gérant les contacts. https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home
Lombaert G, Degrande G, Kogut J, François S (2006) The experimental validation of a numerical model for the prediction of railway induced vibrations. J Sound Vib 297(3–5):512–535. doi:10.1016/j.jsv.2006.03.048
Love A (1927) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge
Lu M, McDowell GR (2007) The importance of modelling ballast particle shape in the discrete element method. Granul Matter 9:69–80. doi:10.1007/s10035-006-0021-3
Makse HA, Gland N, Johnson DL, Schwartz L (2004) Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys Rev E 70(6):061302. doi:10.1103/PhysRevE.70.061302
McNamara S, Flekkøy EG, Måløy KJ (2000) Grains and gas flow: molecular dynamics with hydrodynamic interactions. Phys Rev E 61(4):4054–4059. doi:10.1103/PhysRevE.61.4054
Miller B, O’Hern C, Behringer RP (1996) Stress fluctuations for continuously sheared granular materials. Phys Rev Lett 77(15):3110–3113. doi:10.1103/PhysRevLett.77.3110
Modaressi A, Boufellouh S, Evesque P (1999) Modeling of stress distribution in granular piles: comparison with centrifuge experiments. Chaos 9(3):523–543. doi:10.1063/1.166427
Moreau G, Caillerie D (1998) Continuum modeling of lattice structures in large displacement applications to buckling analysis. Comp Struct 68:181–189. doi:10.1016/S0045-7949(98)00041-8
Moreau JJ (1989) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J, Panagiotopoulos PD (eds) Nonsmooth mechanics and applications. International Centre for Mechanical Sciences (Courses and Lectures), vol 302. Springer, Vienna, pp 1–81
Moreau JJ (1997) Numerical investigation of shear zones in granular materials. In: Grassberger P, Wolf D (eds) Proceedings of HLRZ-workshop on friction, arching, contact dynamics, pp 233–247
Moreau JJ (2001) The stress tensor in granular media and in other mechanical collections. In: Cambou B, Jean M, Radjaï F (eds) Micromechanics of granular materials. Wiley, New York
Mueth DM, Jaeger HM, Nagel SR (1998) Force distribution in a granular medium. Phys Rev E 57(3):3164–3169. doi:10.1103/PhysRevE.57.3164
Nguyen NS, Magoariec H, Cambou B (2012) Local stress analysis in granular materials at a mesoscale. Int J Numer Anal Methods Geomech 36:1609–1635. doi:10.1002/nag.1063
Nichol K, Zanin A, Bastien R, Wandersman E, van Hecke M (2009) Flow-induced agitations create a granular fluid. Phys Rev Lett. doi:10.1103/PhysRevLett.104.078302
Nicodemi M (1998) Force correlations and arch formation in granular assemblies. Phys Rev Lett 80(6):1340–1343. doi:10.1103/PhysRevLett.80.1340
Nicot F, Hadda N, Darve F (2013) Second-order work analysis for granular materials using a multiscale approach. Int J Numer Anal Methods Geomech 37(17):2987–3007. doi:10.1002/nag.2175
Norris AN, Johnson DL (1997) Nonlinear elasticity of granular media. J Appl Mech 64(1):39–49. doi:10.1115/1.2787292
Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35–60. doi:10.1115/1.1432990
Paludo L, Bouvier V, de Abreu Correa L, Cottereau R, Clouteau D (2015) Efficient parallel generation of random field of mechanical properties for geophysical application. In: 6th international conference on earthquake geotechnical engineering, Christchurch
Paolucci R, Maffeis A, Scandella L, Stupazzini M, Vanini M (2003) Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard, Sweden. Soil Dyn Earthq Eng 23(6):425–433. doi:10.1016/S0267-7261(03)00061-7
Pasternak E, Mühlhaus HB (2005) Generalised homogenisation procedures for granular materials. Math Mech Granul Mater 52(1):199–229. doi:10.1007/1-4020-4183-7_12
Puig B, Akian JL (2004) Non-gaussian simulation using Hermite polynomials expansion and maximum entropy principle. Prob Eng Mech 19(4):293–305. doi:10.1016/j.probengmech.2003.09.002
Quintanilla J (1999) Microstucture functions for random media with impenetrable particles. Phys Rev E 60:5788–5794. doi:10.1103/PhysRevE.60.5788
Radjai F, Delenne JY, Azéma E, Roux S (2012) Fabric evolution and accessible geometrical states in granular materials. Granul Matter 14(2):259–264
Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274–277. doi:10.1103/PhysRevLett.77.274
Radjai F, Roux S, Moreau J (1999) Contact forces in a granular packing. Chaos 9(3):544–550. doi:10.1063/1.166428
Radjai F, Topin V, Richefeu V, Voivret C, Delenne JY, Azéma E, El Youssoufi MS (2010) Force transmission in cohesive granular media. Math Model Phys Instances Granul Flows 1277:240–260
Radjai F, Wolf D, Jean M, Moreau J (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80:61–64. doi:10.1103/PhysRevLett.80.61
Reddy K, Forterre Y, Pouliquen O (2011) Evidence of mechanically activated processes in slow granular flows. Phys Rev Lett 106(10):108301. doi:10.1103/PhysRevLett.106.108301
Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168(1–2):375–382. doi:10.1016/j.cam.2003.05.019
Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472
Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39:601–614
Rothenburg L, Kruyt NP (2009) Micromechanical definition of an entropy for quasi-static deformation of granular materials. J Mech Phys Solids 57(3):634–655. doi:10.1016/j.jmps.2008.09.018
Saint-Cyr B, Delenne JY, Voivret C, Radjai F, Sornay P (2011) Rheology of granular materials composed of nonconvex particles. Phys Rev E 84(4):041302
Satake M (1968) Some considerations on the mechanics of granular materials. In: Kröner E (ed) Proceedings of the IUTAM symposium on the generalized cosserat continuum and the continuum theory of dislocations with applications, pp 156–159. doi:10.1007/978-3-662-30257-6_19
Serero D, Reydellet G, Claudin P, Clément E, Levine D (2001) Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur J Phys E 6(2):169–179. doi:10.1007/s101890170019
Shin H, Santamarina J (2013) Role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139(2):353–355. doi:10.1061/(ASCE)GT.1943-5606.0000768
Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204. doi:10.1115/1.3119501
Shinozuka M, Deodatis G (1996) Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Appl Mech Rev 49:29–53
Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64. doi:10.1016/j.cma.2004.12.014
Staron L, Radjai F, Vilotte JP (2006) Granular micro-structure and avalanche precursors. J Stat Mech Theory Exp 07:P07014. doi:10.1088/1742-5468/2006/07/P07014
Suiker aSJ, De Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech 149:161–180. doi:10.1007/BF01261670
Ta QA, Clouteau D, Cottereau R (2010) Modeling of random anisotropic elastic media and impact on wave propagation. Eur J Comput Mech 19(1–3):241–253. doi:10.3166/ejcm.19.241-253
Thi Minh Phuong H, Alart P, Dureisseix D, Saussine G (2011) A domain decomposition method for granular dynamics using discrete elements and application to railway ballast. Ann Solid Struct Mech 2(2–4):87–98. doi:10.1007/s12356-011-0020-x
Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogenization. Adv Eng Softw 29(7–9):699–705. doi:10.1016/S0965-9978(98)00034-9
Torquato S (2001) Random heterogeneous materials. Microstructure and macroscopic properties. Springer, Berlin
Torquato S, Stell G (1985) Microstructure of two-phase random media. V. the n-point matrix probability functions for impenetrable spheres. J Chem Phys 82:980–987. doi:10.1063/1.448475
Tsoungui O, Vallet D, Charmet JC (1998) Use of contact area trace to study the force distributions insisde 2D granular systems. Granul Matter 1(2):65–69. doi:10.1007/s100350050010
Tsuchikura T, Satake M (1998) Statistical measure tensors and their application to computer simulation analysis of biaxial compression text. In: Murakami H, Luco JE (eds) Engineering mechanics: a force for 21st century. ASCE, Reston, pp 1732–1735
Verlet L, Weis JJ (1972) Equilibrium theory of simple liquids. Phys Rev A 5(2):939–952. doi:10.1103/PhysRevA.5.939
Voivret C (2008) Texture et comportement des matériaux granulaires à grande polydispersité. Ph.D. thesis, Université Montpellier 2
Vrij A (1979) Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles. J Chem Phys 71(8):3267–3270. doi:10.1063/1.438756
Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35(2):213–226. doi:10.1016/0022-5096(87)90036-6
Weber J (1966) Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bull de liaison des Ponts et Chaussées 20:1–20
Author information
Authors and Affiliations
Corresponding author
Additional information
The spectral element software used for the simulation in this paper is developed jointly by CentraleSupélec, CEA Commissariat à l’Énergie Atomique and Institut de Physique du Globe de Paris. Within the SINAPS@ project, this development benefited from French state funding managed by the National Research Agency under program RNSR Future Investments bearing reference No. ANR-11-RSNR-0022-04. The simulations were performed at the Mésocentre of CentraleSupélec-ENS Paris-Saclay.
Rights and permissions
About this article
Cite this article
de Abreu Corrêa, L., Quezada, J.C., Cottereau, R. et al. Randomly-fluctuating heterogeneous continuum model of a ballasted railway track. Comput Mech 60, 845–861 (2017). https://doi.org/10.1007/s00466-017-1446-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00466-017-1446-8