Skip to main content

Randomly-fluctuating heterogeneous continuum model of a ballasted railway track

Abstract

This paper proposes a description of a granular medium as a stochastic heterogeneous continuum medium. The heterogeneity of the material properties field recreates the heterogeneous stress field in a granular medium. The stochastic approach means that only statistical information, easily available, is required to construct the model. The heterogeneous continuum model is Calibrated with respect to discrete simulations of a set of railway ballast samples. As they are continuum-based, the equilibrium equations can be solved on a large scale using a parallel implementation of an explicit time discretization scheme for the Finite Element Method. Simulations representative of the influence on the environment of the passage of a train on a ballasted railway track clearly show the influence of the heterogeneity. These simulations seem to correlate well with previously unexplained overly damped measurements in the free field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Agnolin I, Roux JN (2008) On the elastic moduli of three-dimensional assemblies of spheres: characterization and modeling of fluctuations in the particle displacement and rotation. Int J Solids Struct 45(3–4):1101–1123. doi:10.1016/j.ijsolstr.2007.07.016

    Article  MATH  Google Scholar 

  2. Ahmed S, Harkness J, Le Pen L, Powrie W, Zervos A (2015) Numerical modelling of railway ballast at the particle scale. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2424

    Google Scholar 

  3. Al Shaer A, Duhamel D, Sab K, Foret G, Schmitt L (2008) Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains. J Sound Vibr 316:211–233. doi:10.1016/j.jsv.2008.02.055

    Article  Google Scholar 

  4. Alart P, Iceta D, Dureisseix D (2012) A nonlinear domain decomposition formulation with application to granular dynamics. Comput Methods Appl Mech Eng 205–208:59–67. doi:10.1016/j.cma.2011.04.024

    Article  MATH  Google Scholar 

  5. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492–1505

    Article  Google Scholar 

  6. Andrianov IV, Awrejcewicz J, Weichert D (2010) Improved continuous models for discrete media. Math Prob Eng 2010:986242

    Article  MATH  Google Scholar 

  7. Arnst M, Ghanem RG (2008) Probabilistic equivalence and stochastic model reduction in multiscale analysis. Comp Methods Appl Mech Eng 197:3584–3592. doi:10.1016/j.cma.2008.03.016

    Article  MATH  MathSciNet  Google Scholar 

  8. Azéma E, Radjaï F (2010) Stress-strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81(5):051304

    Article  Google Scholar 

  9. Azéma E, Radjai F, Dubois F (2013) Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys Rev E 87(6):062203

    Article  Google Scholar 

  10. Azéma E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41:729–741. doi:10.1016/j.mechmat.2009.01.021

    Article  Google Scholar 

  11. Bagi K (2003) Statistical analysis of contact force components in random granular assemblies. Granul Matter 5(1):45–54. doi:10.1007/s10035-002-0123-5

    Article  MATH  Google Scholar 

  12. Bagi K (2006) Analysis of microstructural strain tensors for granular assemblies. Int J Solids Struct 43(10):3166–3184. doi:10.1016/j.ijsolstr.2005.07.016

    Article  MATH  Google Scholar 

  13. Bardet JP, Vardoulakis I (2001) The asymetry of stress in granular media. Int J Solids Struct 38(2):353–367. doi:10.1016/S0020-7683(00)00021-4

    Article  MATH  Google Scholar 

  14. Blum L, Stell G (1979) Polydisperse systems. I. Scattering function for polydisperse fluids of hard or permeable spheres. J Chem Phys 71(1):42–46. doi:10.1063/1.438088

    Article  Google Scholar 

  15. Blum L, Stell G (1980) Erratum: polydisperse systems. I. Scattering function for polydisperse fluids of hard or permeable spheres. J Chem Phys 72(3):2212. doi:10.1063/1.439328

    Article  Google Scholar 

  16. Brandt H (1955) A study of the speed of sound in porous granular media. J Appl Mech 22:479–486

    MATH  Google Scholar 

  17. Cambou B, Chaze M, Dedecker F (2000) Change of scale in granular materials. Eur J Mech A Solids 19(6):999–1014. doi:10.1016/S0997-7538(00)01114-1

    Article  MATH  Google Scholar 

  18. Chang CS, Chao SJ, Chang Y (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J Solids Struct 32(14):1989–2008. doi:10.1016/0020-7683(94)00225-L

    Article  MATH  Google Scholar 

  19. Chang CS, Lun M (1992) Elastic material constants for isotropic granular solids with particle rotation. Int J Solids Struct 29(8):1001–1018. doi:10.1016/0020-7683(92)90071-Z

    Article  MATH  Google Scholar 

  20. Cohen G (2001) Higher-order numerical methods for transient wave equations. Scientific computation. Springer, Berlin

    Google Scholar 

  21. Connolly DP, Kouroussis G, Laghrouche O, Ho CL, Forde MC (2014) Benchmarking railway vibrations—track, vehicle, ground and building effects. Constr Build Mater doi:10.1016/j.conbuildmat.2014.07.042.

  22. Coopersmith SN, Liu CH, Majumdar S, Narayan O, Witten TA (1996) Model for force fluctuations in bead packs. Phys Rev E 53(5):4673–4685. doi:10.1103/PhysRevE.53.4673

    Article  Google Scholar 

  23. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  24. d’Aguanno B, Klein R (1992) Integral-equation theory of polydisperse Yukawa systems. Phys Rev A 46(12):7652–7656. doi:10.1103/PhysRevA.46.7652

    Article  Google Scholar 

  25. de Abreu Corrêa L, Cottereau R, Bongini E, Costa d’Aguiar S, Faure B, Voivret C (2016) Impact of the heterogeneity of the ballast on the dynamical behavior of the ballast-soil system. In: Proceedings of the CM3 conference on computational transport. Springer [Submitted for publication]

  26. de Saxcé G, Fortin J, Millet O (2004) About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech Mater 36:1175–1184. doi:10.1016/j.mechmat.2003.01.002

    Article  Google Scholar 

  27. Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48(4):803–808. doi:10.1115/1.3157738

    Article  MATH  Google Scholar 

  28. Drescher A, de Josselin de, Jong G (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20(5):337–340. doi:10.1016/0022-5096(72)90029-4

    Article  Google Scholar 

  29. Durán O, Kruyt NP, Luding S (2010) Analysis of three-dimensional micro-mechanical strain formulations for granular materials: evaluation of accuracy. Int J Solids Struct 47(2):251–260. doi:10.1016/j.ijsolstr.2009.09.035

    Article  MATH  Google Scholar 

  30. Eloy C, Clément E (1997) Stochastic aspects of the force network in a regular granular piling. J Phys I 7(12):1541–1558. doi:10.1051/jp1:1997155

    Google Scholar 

  31. Evesque P (2004) Distribution of contact forces in a homogeneous granular material of identical spheres under triaxial compression. Poudr Grains 14(4):82–95

    Google Scholar 

  32. Festa G, Vilotte JP (2005) The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys J Int 161(3):789–812. doi:10.1111/j.1365-246X.2005.02601.x

    Article  Google Scholar 

  33. GDR MiDi (2004) On dense granular flows. Eur Phys J E Soft Matter 14(4):341–65. doi:10.1140/epje/i2003-10153-0

  34. Goddard JD (1990) Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proc R Soc A 430(1878):105–131. doi:10.1098/rspa.1990.0083

    Article  MATH  Google Scholar 

  35. Goldhirsch I, Goldenberg C (2002) On the microscopic foundations of elasticity. Eur Phys J E 9(3):245–251. doi:10.1140/epje/i2002-10073-5

    Article  Google Scholar 

  36. Griffith WL, Triolo R, Tampere AL (1986) Analytical structure function of a polydisperse Percus–Yevick fluid with Schulz (gamma) distributed diameters. Phys Rev A 33(3):2197–2200. doi:10.1103/PhysRevA.33.2197

    Article  Google Scholar 

  37. Grigoriu M (1998) Simulation of stationary non-gaussian translation processes. J Eng Mech 124(2):121–126

    Article  Google Scholar 

  38. Guerin N (1996) Approche expérimentale et numérique du comportement du ballast des voies ferrées. Ph.D. thesis, École nationale des ponts et chaussées [In French]

  39. Guillot L, Aubry L, Le Piver F, Mariotti C, Sèbe O, Thauvin E, Odonbaatar C, Ulziibat M, Demberel S, Sukhbaatar S (2014) Numerical simulation of seismic wave propagation: site effects. Chocs 45:29–36

    Google Scholar 

  40. Han F, Cui J, Yu Y (2010) The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials. Int J Numer Methods Eng 84:972–988. doi:10.1002/nme.2928

    Article  MATH  Google Scholar 

  41. Heckl M, Hauck G, Wettschureck R (1996) Structure-borne sound and vibration from rail traffic. J Sound Vib 193(1):175–184. doi:10.1006/jsvi.1996.0257

    Article  Google Scholar 

  42. Howell DW, Behringer RP, Veje CT (1999) Fluctuations in granular media. Chaos 9(3):559–572. doi:10.1063/1.166430

    Article  MATH  Google Scholar 

  43. Hutter K, Rajagopal KR (1994) On flows of granular materials. Cont Mech Thermodyn 6:81–139

    Article  MATH  MathSciNet  Google Scholar 

  44. Indraratna B, Salim W, Rujikiatkamjorn C (2011) Advanced rail geotechnology. Ballasted track. CRC Press, Boca Raton

    Google Scholar 

  45. INNOTRACK D2.1.3 (2009) First phase on the modelling of poor quality sites. Tech. Rep. Project no. tip5 ct-2006-031415, European commission—sixth framework program

  46. Jehel P, Cottereau R (2015) On damping created by heterogeneous yielding in the numerical analysis of nonlinear RC frame elements. Comp Struct 154:192–203. doi:10.1016/j.compstruc.2015.03.001

    Article  Google Scholar 

  47. Jenkins J, Johnson D, La Ragione L, Makse H (2005) Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J Mech Phys Solids 53(1):197–225. doi:10.1016/j.jmps.2004.06.002

    Article  MATH  MathSciNet  Google Scholar 

  48. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–30. doi:10.1038/nature04801

    Article  Google Scholar 

  49. Kincaid JM, Weis JJ (1977) Radial distribution function of a hard-sphere solid. Mol Phys 34(4):931–938. doi:10.1080/00268977700102241

    Article  Google Scholar 

  50. Komatitsch D (2005) The spectral-element method in seismology. Geophys Monogr Ser 157(55):205–227. doi:10.1029/157GM13

    Google Scholar 

  51. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31(6):407–429. doi:10.1016/S0167-6636(99)00010-1

    Article  Google Scholar 

  52. Lado F (1996) Integral equation theory of polydisperse colloidal suspensions using orthogonal polynomial expansions. Phys Rev E 54(4):4411–4419. doi:10.1103/PhysRevE.54.4411

    Article  Google Scholar 

  53. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MATH  MathSciNet  Google Scholar 

  54. Leibig M (1994) Model for the propagation of sound in granular materials. Phys Rev E 49(2):1647–1656. doi:10.1103/PhysRevE.49.1647

    Article  Google Scholar 

  55. Lim WL, McDowell GR (2005) Discrete element modelling of railway ballast. Granul Matter 7(1):19–29. doi:10.1007/s10035-004-0189-3

    Article  MATH  Google Scholar 

  56. Liu CH, Nagel SR, Schecter DA, Coopersmith SN, Majumdar S, Narayan O, Witten TA (1995) Force fluctuations in bead packs. Science 269(5223):513–515. doi:10.1126/science.269.5223.513

    Article  Google Scholar 

  57. Logiciel de mécanique gérant les contacts. https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home

  58. Lombaert G, Degrande G, Kogut J, François S (2006) The experimental validation of a numerical model for the prediction of railway induced vibrations. J Sound Vib 297(3–5):512–535. doi:10.1016/j.jsv.2006.03.048

    Article  Google Scholar 

  59. Love A (1927) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  60. Lu M, McDowell GR (2007) The importance of modelling ballast particle shape in the discrete element method. Granul Matter 9:69–80. doi:10.1007/s10035-006-0021-3

    Article  Google Scholar 

  61. Makse HA, Gland N, Johnson DL, Schwartz L (2004) Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics. Phys Rev E 70(6):061302. doi:10.1103/PhysRevE.70.061302

    Article  Google Scholar 

  62. McNamara S, Flekkøy EG, Måløy KJ (2000) Grains and gas flow: molecular dynamics with hydrodynamic interactions. Phys Rev E 61(4):4054–4059. doi:10.1103/PhysRevE.61.4054

    Article  Google Scholar 

  63. Miller B, O’Hern C, Behringer RP (1996) Stress fluctuations for continuously sheared granular materials. Phys Rev Lett 77(15):3110–3113. doi:10.1103/PhysRevLett.77.3110

    Article  Google Scholar 

  64. Modaressi A, Boufellouh S, Evesque P (1999) Modeling of stress distribution in granular piles: comparison with centrifuge experiments. Chaos 9(3):523–543. doi:10.1063/1.166427

    Article  MATH  Google Scholar 

  65. Moreau G, Caillerie D (1998) Continuum modeling of lattice structures in large displacement applications to buckling analysis. Comp Struct 68:181–189. doi:10.1016/S0045-7949(98)00041-8

    Article  MATH  Google Scholar 

  66. Moreau JJ (1989) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J, Panagiotopoulos PD (eds) Nonsmooth mechanics and applications. International Centre for Mechanical Sciences (Courses and Lectures), vol 302. Springer, Vienna, pp 1–81

  67. Moreau JJ (1997) Numerical investigation of shear zones in granular materials. In: Grassberger P, Wolf D (eds) Proceedings of HLRZ-workshop on friction, arching, contact dynamics, pp 233–247

  68. Moreau JJ (2001) The stress tensor in granular media and in other mechanical collections. In: Cambou B, Jean M, Radjaï F (eds) Micromechanics of granular materials. Wiley, New York

    Google Scholar 

  69. Mueth DM, Jaeger HM, Nagel SR (1998) Force distribution in a granular medium. Phys Rev E 57(3):3164–3169. doi:10.1103/PhysRevE.57.3164

    Article  Google Scholar 

  70. Nguyen NS, Magoariec H, Cambou B (2012) Local stress analysis in granular materials at a mesoscale. Int J Numer Anal Methods Geomech 36:1609–1635. doi:10.1002/nag.1063

    Article  Google Scholar 

  71. Nichol K, Zanin A, Bastien R, Wandersman E, van Hecke M (2009) Flow-induced agitations create a granular fluid. Phys Rev Lett. doi:10.1103/PhysRevLett.104.078302

  72. Nicodemi M (1998) Force correlations and arch formation in granular assemblies. Phys Rev Lett 80(6):1340–1343. doi:10.1103/PhysRevLett.80.1340

    Article  Google Scholar 

  73. Nicot F, Hadda N, Darve F (2013) Second-order work analysis for granular materials using a multiscale approach. Int J Numer Anal Methods Geomech 37(17):2987–3007. doi:10.1002/nag.2175

    Article  Google Scholar 

  74. Norris AN, Johnson DL (1997) Nonlinear elasticity of granular media. J Appl Mech 64(1):39–49. doi:10.1115/1.2787292

    Article  MATH  Google Scholar 

  75. Ostoja-Starzewski M (2002) Lattice models in micromechanics. Appl Mech Rev 55(1):35–60. doi:10.1115/1.1432990

    Article  MATH  MathSciNet  Google Scholar 

  76. Paludo L, Bouvier V, de Abreu Correa L, Cottereau R, Clouteau D (2015) Efficient parallel generation of random field of mechanical properties for geophysical application. In: 6th international conference on earthquake geotechnical engineering, Christchurch

  77. Paolucci R, Maffeis A, Scandella L, Stupazzini M, Vanini M (2003) Numerical prediction of low-frequency ground vibrations induced by high-speed trains at Ledsgaard, Sweden. Soil Dyn Earthq Eng 23(6):425–433. doi:10.1016/S0267-7261(03)00061-7

    Article  Google Scholar 

  78. Pasternak E, Mühlhaus HB (2005) Generalised homogenisation procedures for granular materials. Math Mech Granul Mater 52(1):199–229. doi:10.1007/1-4020-4183-7_12

    Article  MATH  MathSciNet  Google Scholar 

  79. Puig B, Akian JL (2004) Non-gaussian simulation using Hermite polynomials expansion and maximum entropy principle. Prob Eng Mech 19(4):293–305. doi:10.1016/j.probengmech.2003.09.002

    Article  Google Scholar 

  80. Quintanilla J (1999) Microstucture functions for random media with impenetrable particles. Phys Rev E 60:5788–5794. doi:10.1103/PhysRevE.60.5788

    Article  Google Scholar 

  81. Radjai F, Delenne JY, Azéma E, Roux S (2012) Fabric evolution and accessible geometrical states in granular materials. Granul Matter 14(2):259–264

    Article  Google Scholar 

  82. Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274–277. doi:10.1103/PhysRevLett.77.274

    Article  Google Scholar 

  83. Radjai F, Roux S, Moreau J (1999) Contact forces in a granular packing. Chaos 9(3):544–550. doi:10.1063/1.166428

    Article  MATH  Google Scholar 

  84. Radjai F, Topin V, Richefeu V, Voivret C, Delenne JY, Azéma E, El Youssoufi MS (2010) Force transmission in cohesive granular media. Math Model Phys Instances Granul Flows 1277:240–260

    Google Scholar 

  85. Radjai F, Wolf D, Jean M, Moreau J (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80:61–64. doi:10.1103/PhysRevLett.80.61

    Article  Google Scholar 

  86. Reddy K, Forterre Y, Pouliquen O (2011) Evidence of mechanically activated processes in slow granular flows. Phys Rev Lett 106(10):108301. doi:10.1103/PhysRevLett.106.108301

    Article  Google Scholar 

  87. Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168(1–2):375–382. doi:10.1016/j.cam.2003.05.019

    Article  MATH  MathSciNet  Google Scholar 

  88. Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MATH  MathSciNet  Google Scholar 

  89. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39:601–614

    Article  Google Scholar 

  90. Rothenburg L, Kruyt NP (2009) Micromechanical definition of an entropy for quasi-static deformation of granular materials. J Mech Phys Solids 57(3):634–655. doi:10.1016/j.jmps.2008.09.018

    Article  MATH  Google Scholar 

  91. Saint-Cyr B, Delenne JY, Voivret C, Radjai F, Sornay P (2011) Rheology of granular materials composed of nonconvex particles. Phys Rev E 84(4):041302

    Article  Google Scholar 

  92. Satake M (1968) Some considerations on the mechanics of granular materials. In: Kröner E (ed) Proceedings of the IUTAM symposium on the generalized cosserat continuum and the continuum theory of dislocations with applications, pp 156–159. doi:10.1007/978-3-662-30257-6_19

  93. Serero D, Reydellet G, Claudin P, Clément E, Levine D (2001) Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur J Phys E 6(2):169–179. doi:10.1007/s101890170019

    Article  Google Scholar 

  94. Shin H, Santamarina J (2013) Role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139(2):353–355. doi:10.1061/(ASCE)GT.1943-5606.0000768

    Article  Google Scholar 

  95. Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204. doi:10.1115/1.3119501

    Article  MathSciNet  Google Scholar 

  96. Shinozuka M, Deodatis G (1996) Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Appl Mech Rev 49:29–53

    Article  Google Scholar 

  97. Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64. doi:10.1016/j.cma.2004.12.014

    Article  MATH  MathSciNet  Google Scholar 

  98. Staron L, Radjai F, Vilotte JP (2006) Granular micro-structure and avalanche precursors. J Stat Mech Theory Exp 07:P07014. doi:10.1088/1742-5468/2006/07/P07014

    Google Scholar 

  99. Suiker aSJ, De Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech 149:161–180. doi:10.1007/BF01261670

    Article  MATH  Google Scholar 

  100. Ta QA, Clouteau D, Cottereau R (2010) Modeling of random anisotropic elastic media and impact on wave propagation. Eur J Comput Mech 19(1–3):241–253. doi:10.3166/ejcm.19.241-253

    Article  MATH  Google Scholar 

  101. Thi Minh Phuong H, Alart P, Dureisseix D, Saussine G (2011) A domain decomposition method for granular dynamics using discrete elements and application to railway ballast. Ann Solid Struct Mech 2(2–4):87–98. doi:10.1007/s12356-011-0020-x

    Google Scholar 

  102. Tollenaere H, Caillerie D (1998) Continuous modeling of lattice structures by homogenization. Adv Eng Softw 29(7–9):699–705. doi:10.1016/S0965-9978(98)00034-9

    Article  Google Scholar 

  103. Torquato S (2001) Random heterogeneous materials. Microstructure and macroscopic properties. Springer, Berlin

    MATH  Google Scholar 

  104. Torquato S, Stell G (1985) Microstructure of two-phase random media. V. the n-point matrix probability functions for impenetrable spheres. J Chem Phys 82:980–987. doi:10.1063/1.448475

  105. Tsoungui O, Vallet D, Charmet JC (1998) Use of contact area trace to study the force distributions insisde 2D granular systems. Granul Matter 1(2):65–69. doi:10.1007/s100350050010

    Article  Google Scholar 

  106. Tsuchikura T, Satake M (1998) Statistical measure tensors and their application to computer simulation analysis of biaxial compression text. In: Murakami H, Luco JE (eds) Engineering mechanics: a force for 21st century. ASCE, Reston, pp 1732–1735

    Google Scholar 

  107. Verlet L, Weis JJ (1972) Equilibrium theory of simple liquids. Phys Rev A 5(2):939–952. doi:10.1103/PhysRevA.5.939

    Article  Google Scholar 

  108. Voivret C (2008) Texture et comportement des matériaux granulaires à grande polydispersité. Ph.D. thesis, Université Montpellier 2

  109. Vrij A (1979) Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles. J Chem Phys 71(8):3267–3270. doi:10.1063/1.438756

    Article  Google Scholar 

  110. Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35(2):213–226. doi:10.1016/0022-5096(87)90036-6

    Article  MATH  Google Scholar 

  111. Weber J (1966) Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bull de liaison des Ponts et Chaussées 20:1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régis Cottereau.

Additional information

The spectral element software used for the simulation in this paper is developed jointly by CentraleSupélec, CEA Commissariat à l’Énergie Atomique and Institut de Physique du Globe de Paris. Within the SINAPS@ project, this development benefited from French state funding managed by the National Research Agency under program RNSR Future Investments bearing reference No. ANR-11-RSNR-0022-04. The simulations were performed at the Mésocentre of CentraleSupélec-ENS Paris-Saclay.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abreu Corrêa, L., Quezada, J.C., Cottereau, R. et al. Randomly-fluctuating heterogeneous continuum model of a ballasted railway track. Comput Mech 60, 845–861 (2017). https://doi.org/10.1007/s00466-017-1446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1446-8

Keywords