Skip to main content
Log in

A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This manuscript presents an extension of the recently-developed high order complete scaled boundary shape functions to model elasto-static problems in functionally graded materials. Both isotropic and orthotropic functionally graded materials are modelled. The high order complete properties of the shape functions are realized through the introduction of bubble-like functions derived from the equilibrium condition of a polygon subjected to body loads. The bubble functions preserve the displacement compatibility between the elements in the mesh. The heterogeneity resulting from the material gradient introduces additional terms in the polygon stiffness matrix that are integrated analytically. Few numerical benchmarks were used to validate the developed formulation. The high order completeness property of the bubble functions result in superior accuracy and convergence rates for generic elasto-static and fracture problems involving functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bao G, Wang L (1995) Modelling cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871

    Article  MATH  Google Scholar 

  2. Behnke R, Mundil M, Birk C, Kaliske M (2014) A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. Int J Numer Methods Eng 99:966–999

    Article  MATH  MathSciNet  Google Scholar 

  3. Belytschko T, Gu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  4. Berlo SP (2009) Stress concentration effects in highly localized functionally graded materials. Masters thesis, University of Rhode Island

  5. Birk C, Behnke R (2012) A modified scaled boundary finite element method for three-dimensional dynamic soil–structure interaction in layered soil. Int J Numer Methods Eng 89:371–402

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen SS, Xu CJ, Tong GS (2015) A meshless local neighbour interpolation method to modeling of functionally graded viscoelastic materials. Eng Anal Bound Elem 52:92–98

    Article  MathSciNet  Google Scholar 

  7. Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589

    Article  MATH  MathSciNet  Google Scholar 

  8. Enab TA (2014) Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Eng J 5:839–850

    Article  Google Scholar 

  9. Gao XW (2002) A boundary element method with internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech (ASME) 69:154–160

    Article  MATH  Google Scholar 

  10. Goswami S, Becker W (2012) Computation of 3-d stress singlarities for multiple cracks and crack intersections by the scaled boundary finite element method. Int J Fract 175:13–25

    Article  Google Scholar 

  11. Hernik S (2010) New concept of finite element method for FGM materials. Czas Tech Mech Politech Krak 107:99–106

    Google Scholar 

  12. Ibrahimbegovic A, Wilson EL (1991) A modified method of incompatible modes. Commun Numer Methods Eng 7:187–194

    Article  MATH  Google Scholar 

  13. Kim JH, Paulino GH (2002) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech 69:502–514

    Article  MATH  Google Scholar 

  14. Koizumi M (1997) FGM activities in Japan. Compos B Eng 28:1–4

    Article  Google Scholar 

  15. Liu J, Peng HF, Gao XW, Cui M (2015) A traction-recovery method for evaluating boundary stresses on thermal elasticity problems of FGMs. Eng Anal Bound Elem 61:226–231

    Article  MathSciNet  Google Scholar 

  16. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  17. Martinez-Paneda E, Gallego R (2015) Numerical analysis of quasi-static fracture in functionally graded materials. Int J Mech Mater Des 11:405–424

    Article  Google Scholar 

  18. Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22

    Article  MATH  Google Scholar 

  19. Natarajan S, Song C, Belouettar S (2014) Numerical evaluation of stress intensity factors and t-stress for interfacial cracks and cracks terminating at interface with asymptotic enrichment. Comput Methods Appl Mech Eng 279:86–112

    Article  MathSciNet  Google Scholar 

  20. Nguyen VP, Rabczuk T, Bordas S, Dufolt M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MATH  MathSciNet  Google Scholar 

  21. Ooi ET, Song C, Tin-Loi F, Yang ZJ (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91:319–342

    Article  MATH  MathSciNet  Google Scholar 

  22. Ooi ET, Song C, Tin-Loi F (2014) A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng 268:905–937

    Article  MATH  MathSciNet  Google Scholar 

  23. Ooi ET, Song C, Natarajan S (2016) Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions. Int J Numer Methods Eng 108:1086–1120

    Article  MathSciNet  Google Scholar 

  24. Riveiro MA, Gallego R (2013) Boundary elements and the analog equation method for the solution of elastic problems in 3-d non-homogeneous bodies. Comput Methods Appl Mech Eng 263:12–19

    Article  MATH  MathSciNet  Google Scholar 

  25. Rosseau CE, Tippur HV (2000) Compositionally graded materials with ccrack normal to the elastic gradient. Acta Mater 48:4021–4033

    Article  Google Scholar 

  26. Saddd MH (2005) Elasticity: theory, applications and numerics. Elsevier Academic Press, Butterworth-Heinemann, Burlington

    Google Scholar 

  27. Santare AG, Lambros MH (2000) Use of graded finite elements to model the behaviour of nonhomogeneous materials. J Appl Mech (ASME) 67:819–822

    Article  MATH  Google Scholar 

  28. Sladek J, Sladek V, Zhang C (2005) Stress analysis in anisotropic functionally graded materials by the MLPG method. Eng Anal Bound Elem 29:597–609

    Article  MATH  Google Scholar 

  29. Sladek J, Sladek V, Zhang C, Solek P, Pan E (2007) Evaluation of fracture parameters in continuously nonhomogeneous piezoelectroc solids. Int J Fract 145:313–326

    Article  MATH  Google Scholar 

  30. Sladek J, Sladek V, Zhang C (2008a) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part 1: interaction integral. Mech Adv Mater Struct 15:438–443

    Article  Google Scholar 

  31. Sladek J, Sladek V, Zhang C (2008b) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part ii: meshless method. Mech Adv Mater Struct 15:444–452

    Article  Google Scholar 

  32. Sladek J, Sladek V, Solek P, Zhang C (2010) Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the mlpg. Int J Solids Struct 47:1381–1391

    Article  MATH  Google Scholar 

  33. Sladek J, Stanak P, Han ZD, Sladek V, Atluri SN (2013) Applications of the mlpg method in engineering and sciences: a review. Comput Model Eng Sci 92:423–475

    Google Scholar 

  34. Sladek V, Sladek J (1998) Singular integrals and boundary elements. Comput Methods Appl Mech Eng 1998:251–266

    Article  MATH  MathSciNet  Google Scholar 

  35. Song C (2006) Analysis of singular stress fields at multi-material corners under thermal loading. Int J Numer Methods Eng 65:620–652

    Article  MATH  Google Scholar 

  36. Song C, Wolf JP (1997) The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput Methods Appl Mech Eng 147:329–355

    Article  MATH  MathSciNet  Google Scholar 

  37. Song H, Tao L (2010) An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder. Int J Numer Methods Fluids 63:96–118

    MATH  Google Scholar 

  38. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61:2045–2066

    Article  MATH  MathSciNet  Google Scholar 

  39. Talischi C, Paulino GH (2014) Addressing integration error for polygonal finite elements trhough polynomial projections: a patch test connection. Math Models Methods Appl Sci 24:1701–1727

    Article  MATH  MathSciNet  Google Scholar 

  40. Talischi C, Pérereira A, Menezes IF, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747

    Article  MATH  MathSciNet  Google Scholar 

  41. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219

    Article  MATH  Google Scholar 

  42. Vatanabe SL, Paulino GH, Silva ECN (2013) Design of functionally graded piezocomposites using topology optimization and homogenization—toward effective energy harvesting materials. Comput Methods Appl Mech Eng 266:205–218

    Article  MATH  MathSciNet  Google Scholar 

  43. Wachspress EL (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  44. Wang H, Qin QH (2008) Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng Anal Bound Elem 32:704–712

    Article  MATH  Google Scholar 

  45. Williamson RL, Rabin BH, Drake JT (1993) Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1: model description and geometrical effects. J Appl Phys 74:1310–1320

    Article  Google Scholar 

  46. Yang K, Feng WZ, Peng HF, Lv J (2015) A new analytical approach of functionally graded material structures for thermal stress BEM analysis. Int Commun Heat Mass Transf 62:26–32

    Article  Google Scholar 

  47. Zhang C, Cui M, Wang J, Gao XW, Sladek J, Sladek V (2011) 3d crack analysis in functionally graded materials. Eng Fract Mech 78:585–604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Ooi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, E.T., Song, C. & Natarajan, S. A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials. Comput Mech 60, 943–967 (2017). https://doi.org/10.1007/s00466-017-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1443-y

Keywords

Navigation