Advertisement

Computational Mechanics

, Volume 60, Issue 4, pp 595–611 | Cite as

A fiber orientation-adapted integration scheme for computing the hyperelastic Tucker average for short fiber reinforced composites

  • Niels GoldbergEmail author
  • Felix Ospald
  • Matti Schneider
Original Paper

Abstract

In this article we introduce a fiber orientation-adapted integration scheme for Tucker’s orientation averaging procedure applied to non-linear material laws, based on angular central Gaussian fiber orientation distributions. This method is stable w.r.t. fiber orientations degenerating into planar states and enables the construction of orthotropic hyperelastic energies for truly orthotropic fiber orientation states. We establish a reference scenario for fitting the Tucker average of a transversely isotropic hyperelastic energy, corresponding to a uni-directional fiber orientation, to microstructural simulations, obtained by FFT-based computational homogenization of neo-Hookean constituents. We carefully discuss ideas for accelerating the identification process, leading to a tremendous speed-up compared to a naive approach. The resulting hyperelastic material map turns out to be surprisingly accurate, simple to integrate in commercial finite element codes and fast in its execution. We demonstrate the capabilities of the extracted model by a finite element analysis of a fiber reinforced chain link.

Keywords

Computational homogenization Hyperelasticity Short fibers Composite materials Orientation tensors Numerical integration Injection molding 

Notes

Acknowledgements

Niels Goldberg and Felix Ospald acknowledge support from the German Research Foundation (DFG) via the Federal Cluster of Excellence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”. We thank the professorship in Materials-Handling Technology (Fördertechnik) at TU Chemnitz for sharing the CAD geometry of the chain link.

References

  1. 1.
    Autodesk, Inc., Moldflow. http://www.autodesk.com/moldflow. Accessed: 2016-09-07
  2. 2.
    CoreTech System Co., Ltd., Moldex3D. http://www.moldex3d.com. Accessed: 2016-09-07
  3. 3.
    SIGMA Engineering GmbH, SIGMASOFT. http://www.sigmasoft.de. Accessed: 2016-09-07
  4. 4.
    Aboudi J (2004) The generalized method of cells and high-fidelity generalized method of cells micromechanical models – a review. Mech Adv Mater Struct 11(4–5):329–366CrossRefGoogle Scholar
  5. 5.
    Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784. doi: 10.1122/1.549945 CrossRefGoogle Scholar
  6. 6.
    Balzani D, Neff P, Schröder J, Holzapfel G (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bažant P, Oh BH (1986) Efficient numerical integration on the surface of a sphere. ZAMM - J Appl Math Mech / Zeitschrift für Angew Math und Mech 66(1):37–49CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157CrossRefGoogle Scholar
  9. 9.
    Dinh SM, Armstrong RC (1984) A rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28(3):207–227. doi: 10.1122/1.549748 CrossRefzbMATHGoogle Scholar
  10. 10.
    Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A 241(1226):376–396CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eshelby J (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc A 252(1271):561–569CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Feder J (1980) Random sequential adsorption. J Theor Biol 87(2):237–254CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fliegener S, Luke M, Gumbsch P (2014) 3D microstructure modeling of long fiber reinforced thermoplastics. Compos Sci Technol 104:136–145CrossRefGoogle Scholar
  14. 14.
    Freed AD, Einstein DR, Vesely I (2005) Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech Modeling Mechanobiol 4(2–3):100–117CrossRefGoogle Scholar
  15. 15.
    Freund M (2013) Verallgemeinerung eindimensionaler Materialmodellefür die Finite-Elemente-Methode, Technische UniversitätChemnitz / Berichte aus der Professur Festkörpermechanik, vol. 336. VDI-Verl., DüsseldorfGoogle Scholar
  16. 16.
    Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35CrossRefGoogle Scholar
  17. 17.
    Geymonat G, Müller S, Triantafyllidis N (1993) Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch Ration Mech Anal 122(3):231–290. doi: 10.1007/BF00380256 CrossRefzbMATHGoogle Scholar
  18. 18.
    N. Goldberg, H. Donner, J. Ihlemann. (2015). Evaluation of hyperelastic models for unidirectional short fibre reinforced materials using a representative volume element with refined boundary conditions. Technische Mechanik. 35(2):80–99. http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2015_Heft2/02_Goldberg.html
  19. 19.
    Gräf M (2013) Efficient algorithms for the computation of optimal quadrature points on riemannian manifolds. Universitätsverlag Chemnitz, ChemnitzGoogle Scholar
  20. 20.
    Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Herzog R, Ospald F (2016) Optimal experimental design for linear elastic model parameter identification of injection molded short fiber-reinforced plastics. Int J Numer Methods EngGoogle Scholar
  22. 22.
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Sol 13:213–222CrossRefGoogle Scholar
  23. 23.
    Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R SocLondon A: Math, Phys Eng Sci 326(1565):131–147. doi: 10.1098/rspa.1972.0001 CrossRefzbMATHGoogle Scholar
  24. 24.
    Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London. Ser A 102(715):161–179. doi: 10.1098/rspa.1922.0078 CrossRefzbMATHGoogle Scholar
  25. 25.
    Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and newton-krylov solvers for fft-based homogenization of elasticity at large deformations. Comput Mech 54(6):1497–1514. doi: 10.1007/s00466-014-1071-8 CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kabel M, Fliegener S, Schneider M (2015) Mixed boundary conditions for fft-based homogenization at finite strains. Comput MechGoogle Scholar
  27. 27.
    Kabel M, Merkert D, Schneider M (2014) FFT-based homogenization using composite voxels. Comput Methods Appl Mech EngGoogle Scholar
  28. 28.
    Kabel M, Ospald F, Schneider M (2016) A model order reduction method for computational homogenization at finite strains on regular grids using hyperelastic laminates to approximate interfaces. Comp Methods Appl Mech Eng 309:476–496. doi: 10.1016/j.cma.2016.06.021 CrossRefMathSciNetGoogle Scholar
  29. 29.
    Kammoun S, Doghri I, Adam L, Robert G, Delannay L (2011) First pseudo-grain failure model for inelastic composites with misaligned short fibers. Compos Part A: Appl Sci Manuf 42:1892–1902CrossRefGoogle Scholar
  30. 30.
    Lahellec N, Michel JC, Moulinec H, Suquet P (2003) Analysis of inhomogeneous materials at large strains using fast fourier transforms. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains, solid mechanics and its applications, vol 108. Springer, Netherlands, pp 247–258. doi: 10.1007/978-94-017-0297-3_22
  31. 31.
    Lebedev VI (1976) Quadratures on a sphere. USSR Comput Math Math Phys 16(2):10–24CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Li Y, Stier B, Bednarcyk B, Simon JW, Reese S (2016) The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites. Mech Mater 92:261–274CrossRefGoogle Scholar
  33. 33.
    Lipscomb GI, Denn M, Hur D, Boger D (1988) Flow of fiber suspensions in complex geometries. J Non-Newtonian Fluid Mech 26(3):297–325. doi: 10.1016/0377-0257(88)80023-5 CrossRefGoogle Scholar
  34. 34.
    Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Engrg 193:5477–5502CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials - Part I: The non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52:2617–2660CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72(4):300–317CrossRefzbMATHGoogle Scholar
  38. 38.
    Montgomery-Smith S, Jack D, Smith DE (2011) The fast exact closure for jeffery’s equation with diffusion. J Non-Newtonian Fluid Mech 166(7–8):343–353. doi: 10.1016/j.jnnfm.2010.12.010 CrossRefzbMATHGoogle Scholar
  39. 39.
    Mori T, Tanaka K (1973) Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metall 21:571–574CrossRefGoogle Scholar
  40. 40.
    Mosby M, Matouš K (2016) Computational homogenization at extreme scales. Extreme Mech Lett 6:68–74CrossRefGoogle Scholar
  41. 41.
    Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423zbMATHGoogle Scholar
  42. 42.
    Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Müller S (1987) Homogenization of nonconvex integral functionals and cellular elastic materials. Arch R Mech Anal 99(3):189–212. doi: 10.1007/BF00284506
  44. 44.
    Müller V, Brylka B, Dillenberger F, Glöckner R, Kolling S, Böhlke T (2015) Homogenization of elastic properties of short-fiber reinforced composites based on measured microstructure data. J Compos Mater. doi: 10.1177/0021998315574314 Google Scholar
  45. 45.
    Neukamm S, Schäffner M (2016) Quantitative homogenization in nonlinear elasticity for small loads. Preprint, arXiv:1703.07947
  46. 46.
    Ospald F (2014) Numerical simulation of injection molding using OpenFOAM. Proc Appl Math Mech 14(1):673–674. doi: 10.1002/pamm.201410320 CrossRefGoogle Scholar
  47. 47.
    Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4(1):30–40. doi: 10.1063/1.858498 CrossRefzbMATHGoogle Scholar
  48. 48.
    Ponte Castañeda P, Suquet P (2002) Nonlinear composites and microstructure evolution. Springer, DordrechtCrossRefzbMATHGoogle Scholar
  49. 49.
    Schneider M (2015) Convergence of FFT-based homogenization for strongly heterogeneous media. Math Methods Appl Sci 38(13):2761–2778CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Schneider M, Merkert D, Kabel M (2016) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int’l J for Numerical Methods Eng pp. 1–29Google Scholar
  51. 51.
    Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720CrossRefMathSciNetGoogle Scholar
  52. 52.
    Schröder J (2014) A numerical two-scale homogenization scheme: the FE2-method, pp. 1–64. Springer Vienna, Vienna. doi: 10.1007/978-3-7091-1625-8_1
  53. 53.
    Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Tyler DE (1987) Statistical analysis for the angular central Gaussian distribution on the sphere. Biom Trust 74(3):579–589CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Voigt W (1889) Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalen der Physik 274(12):573–587CrossRefzbMATHGoogle Scholar
  56. 56.
    Vondřejc J, Zeman J, Marek I (2014) An FFT-based Galerkin method for homogenization of periodic media. Comput Math Appl 68:156–173CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44(10):3888–3894CrossRefGoogle Scholar
  58. 58.
    Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225Google Scholar
  59. 59.
    Zheng QS, Du DX (2001) An explicit and universal applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys 49:2765–2788CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.TU Chemnitz, Professur FestkörpermechanikChemnitzGermany
  2. 2.TU Chemnitz, Professur Numerische Mathematik (PDE)ChemnitzGermany
  3. 3.Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations