Computational Mechanics

, Volume 60, Issue 3, pp 445–463 | Cite as

A regularized orthotropic continuum damage model for layered composites: intralaminar damage progression and delamination

  • Jaan-Willem Simon
  • Daniel Höwer
  • Bertram Stier
  • Stefanie Reese
  • Jacob Fish
Original Paper

Abstract

Predicting progressive damage in composite materials is essential for the design of most lightweight constructions. When laminated composite structures are considered, both intralaminar and interlaminar (delamination) damage evolution need to be addressed. Typically, these different damage modes are treated separately. On the contrary, in this paper, a continuum damage model is presented which is capable of modeling orthotropic damage progression within layers as well as delamination. The model is formulated in a thermodynamically consistent manner. Moreover, the results are mesh independent due to a fracture energy based regularization scheme.

Keywords

Orthotropic damage model Thermodynamically consistent Damage interaction Layered composites Delamination Regularization 

Notes

Acknowledgements

The authors thank Brett Bednarcyk, whose previous works have been used as basis for the current research. Some of the numerical results of the second example in Chap. 6 have been generated by him. In addition, the first author gratefully acknowledges the financial support of the Daimler und Benz Stiftung, the Heinrich Hertz-Stiftung, and the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia.

References

  1. 1.
    Abaqus finite element software. Dassault Systemes Simulia Corp. 2014Google Scholar
  2. 2.
    Aboudi J (2011) The effect of anisotropic damage evolution on the behavior of ductile and brittle matrix composites. Int J Solids Struct 48:2102–2119CrossRefGoogle Scholar
  3. 3.
    Aboudi J, Arnold SM, Bednarcyk B (2013) Micromechanics of composite materials—a generalized multiscale approach, 1st edn. Elsevier, New YorkGoogle Scholar
  4. 4.
    Balzani C, Wagner W (2008) An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng Fract Mech 75:2597–2615CrossRefGoogle Scholar
  5. 5.
    Barbero EJ (2008) Finite element analysis of composite materials, 1st edn. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Barbero EJ (2013) Finite element analysis of composite materials, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  7. 7.
    Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Matériaux et Constructions 16:155–177CrossRefGoogle Scholar
  8. 8.
    Bažant ZP, Pijaudier-Cabot G (1989) Measurement of characteristic length of nonlocal continuum. J Eng Mech 115:755–767CrossRefGoogle Scholar
  9. 9.
    Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Bednarcyk BA, Aboudi J, Arnold SM (2010) Micromechanics modeling of composites subjected to multiaxial progressive damage in the constituents. AIAA J 48:1367–1378CrossRefGoogle Scholar
  11. 11.
    Bednarcyk BA, Stier B, Simon JW, Reese S, Pineda EJ (2015) Meso- and micro-scale modeling of damage in plain weave composites. Compos Struct 121:258–270CrossRefGoogle Scholar
  12. 12.
    Betten J (2001) Mathematical modelling of materials behaviour under creep conditions. Appl Mech Rev 54:107–132CrossRefGoogle Scholar
  13. 13.
    Betten J (2005) Creep mechanics, 2nd edn. Springer, BerlinMATHGoogle Scholar
  14. 14.
    Borkowski L, Chattopadhyay A (2015) Multiscale model of woven ceramic matrix composites considering manufacturing induced damage. Compos Struct 126:62–71CrossRefGoogle Scholar
  15. 15.
    Camanho PP, Matthews FL (1999) Delamination onset prediction in mechanically fastened joints. J Compos Mater 33:906–927CrossRefGoogle Scholar
  16. 16.
    Chaboche J (1988) Continuum damage mechanics—part I: general concepts, part II: damage growth, crack initiation, and crack growth. J Appl Mech 55:59–71CrossRefGoogle Scholar
  17. 17.
    Chow CL, Wang J (1987) An anisotropic theory of continuum damage mechanics for ductile fracture. Eng Fract Mech 21:547–558CrossRefGoogle Scholar
  18. 18.
    de Borst R, Remmers JJC (2006) Computational modeling of delamination. Compos Sci Technol 66:713–722CrossRefGoogle Scholar
  19. 19.
    Desmorat R, Gatuingt F, Ragueneau F (2007) Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Eng Fract Mech 74:1539–1560CrossRefGoogle Scholar
  20. 20.
    Dimitri R, Trullo M, de Lorenzis L, Zavarise G (2015) Coupled cohesive zone models for mixed-mode fracture: a comparative study. Eng Fract Mech 148:145–179CrossRefGoogle Scholar
  21. 21.
    Duddu R, Waisman H (2013) A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput Mech 51:961–974CrossRefMATHGoogle Scholar
  22. 22.
    Falzon BG, Apruzzese P (2011) Numerical analysis of intralaminar failure mechanisms in composite structures—part II: applications. Compos Struct 93:1047–1053CrossRefGoogle Scholar
  23. 23.
    Fish J, Jiang T, Yuan Z (2012) A staggered nonlocal multiscale model for a heterogeneous medium. Int J Numer Methods Eng 91:142–157CrossRefMATHGoogle Scholar
  24. 24.
    Gupta AK, Patel BP, Nath Y (2013) Continuum damage modeling of composite laminated plates using higher order theory. Compos Struct 99:141–151CrossRefGoogle Scholar
  25. 25.
    Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31:359–389CrossRefMATHGoogle Scholar
  26. 26.
    Hashin IZ, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7:448–464CrossRefGoogle Scholar
  27. 27.
    Hoover C, Bažant ZP (2014) Cohesive crack, size effect, crack band and work-of-fracture models compared to comprehensive concrete fracture tests. Int J Fract 187:133–143CrossRefGoogle Scholar
  28. 28.
    Jirasek M, Bauer M (2012) Numerical aspects of the crack band approach. Comput Struct 110–111:60–78CrossRefGoogle Scholar
  29. 29.
    Kachanov LM (1986) Introduction to continuum damage mechanics. Nijhoff Publishers, DordrechtCrossRefMATHGoogle Scholar
  30. 30.
    Kanoute P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16:31–75CrossRefMATHGoogle Scholar
  31. 31.
    Kenik D, Nelson E, Robbins D, Mabson G (2012) Developing guidelines for the application of coupled fracture/continuum mechanics-based composite damage models for reducing mesh sensitivity. AIAA J 1618:1–19Google Scholar
  32. 32.
    Klusemann B, Svendsen B (2012) Homogenization modeling of thin-layer-type microstructure. Int J Solids Struct 49:1828–18389CrossRefGoogle Scholar
  33. 33.
    Klinge S, Hackl K (2012) Application of the multiscale FEM to the modeling of nonlinear composites with a random microstructure. Int J Multiscale Comput Eng 10:213–227CrossRefGoogle Scholar
  34. 34.
    Krajcinovic D (1998) Selection of damage parameter—art or science? Mech Mater 28:165–179CrossRefGoogle Scholar
  35. 35.
    Krajcinovic D, Basista M, Sumarac D (1991) Micromechanically inspired phenomenological damage model. J Appl Mech 58:305–310CrossRefGoogle Scholar
  36. 36.
    Kroll U, Matzenmiller A (2015) Parameter identification of a damage model for the lifetime prediction of adhesively bonded joints. Appl Mech Mater 784:300–307CrossRefGoogle Scholar
  37. 37.
    Kuhl E, Ramm E, de Borst R (2000) An anisotropic gradient damage model for quasi-brittle materials. Comput Methods Appl Mech Eng 183:87–103CrossRefMATHGoogle Scholar
  38. 38.
    Le JL, Elias J (2016) A Probabilistic Crack Band Model for Quasibrittle Fracture. J Appl Mech 83(051005):1–7Google Scholar
  39. 39.
    Lemaitre J (1985) Mathematical modelling of materials behaviour under creep conditions. Appl Mech Rev 54:107–132Google Scholar
  40. 40.
    Lemaitre J (1996) A course on damage mechanics, 2nd edn. Springer, BerlinCrossRefMATHGoogle Scholar
  41. 41.
    Lemaitre J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  42. 42.
    Li B, Li Y, Su J (2014) A combined interface element to simulate interfacial fracture of laminated shell structures. Composites B 58:217–227CrossRefGoogle Scholar
  43. 43.
    Lin SP, Chen JS, Liang S (2016) A damage analysis for brittle materials using stochastic micro-structural information. Comput Mech 57:371–385CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Liu Y, Filonova V, Hu N, Fish J, Yuan Z, Belytschko T (2014) A regularized phenomenological multiscale damage model. Int J Numer Methods Eng 99:867–887CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    McAuliffe C, Waisman H (2013) Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements. Comput Mech 51:807–823CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152CrossRefGoogle Scholar
  47. 47.
    Melro AR, Camanho PP, Pires FMA, Pinho ST (2013) Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part I constitutive modelling. Int J Solids Struct 50:1897–1905CrossRefGoogle Scholar
  48. 48.
    Meyer P, Waas AM (2016) FEM predictions of damage in continous fiber ceramic matrix composites under transverse tension using the crack band method. Acta Mater 102:292–303CrossRefGoogle Scholar
  49. 49.
    Mi Y, Chrisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272CrossRefGoogle Scholar
  50. 50.
    Maimi P, Camanho PP, Mayugo JA, Davila CG (2007) A continuum damage model for composite laminates: part I constitutive model. Mech Mater 39:897–908CrossRefGoogle Scholar
  51. 51.
    Maimi P, Mayugo JA, Camanho PP (2008) A Three-dimensional Damage Model for Transversely Isotropic Composite Laminates. J Compos Mater 42:2717–2745CrossRefGoogle Scholar
  52. 52.
    Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67:69–85CrossRefMATHGoogle Scholar
  53. 53.
    Nguyen GD, Nguyen CT, Nguyen VP, Bui HH, Shen L (2016) A size-dependent constitutive modelling framework for localised failure analysis. Comput Mech 58:257–280CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Niazi MS, Wisselink HH, Meinders T (2013) Viscoplastic regularization of local damage models: revisited. Comput Mech 51:203–216CrossRefGoogle Scholar
  55. 55.
    Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28:461–474CrossRefMATHGoogle Scholar
  56. 56.
    Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATHGoogle Scholar
  57. 57.
    Pela L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967CrossRefGoogle Scholar
  58. 58.
    Pela L, Cervera M, Oller S, Chiumenti M (2014) A localized mapped damage model for orthotropic materials. Eng Fract Mech 124–125:196–216CrossRefGoogle Scholar
  59. 59.
    Pena E (2011) A rate dependent directional damage model for fibred materials: application to soft biological tissues. Comput Mech 48:407–420CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Petracca M, Pela L, Rossi R, Oller S, Camata G, Spacone E (2016) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57:257–276CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Pineda EJ, Waas AM (2013) Numerical implementation of a multiple-ISV thermodynamically-based work potential theory for modeling progressive damage and failure in fiber reinforced laminates. Int J Fract 182:93–122CrossRefGoogle Scholar
  62. 62.
    Rah K, van Paepegem W, Degriek J (2013) An optimal versatile partial hybrid stress solidshell element for the analysis of multilayer composites. Int J Numer Methods Eng 93:201–223CrossRefMATHGoogle Scholar
  63. 63.
    Richard B, Ragueneau F (2013) Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings: formulation, numerical implementation and applications. Eng Fract Mech 98:383–406CrossRefGoogle Scholar
  64. 64.
    Shojaei A, Li G, Fish J, Tan PJ (2014) Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. Int J Solids Struct 51:4068–4081CrossRefGoogle Scholar
  65. 65.
    Sidoroff F (1981) Description of anisotropic damage application to elasticity. Physical nonlinearities in structural analysis. Springer, Berlin, pp 237–244Google Scholar
  66. 66.
    Silva MAL, de Moura MFSF, Morais JJL (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos Part A 37:1334–1344CrossRefGoogle Scholar
  67. 67.
    Simon JW, Höwer D, Stier B, Reese S (2015) Meso-mechanically motivated modeling of layered fiber reinforced composites accounting for delamination. Compos Struct 122:477–487CrossRefGoogle Scholar
  68. 68.
    Simon JW, Stier B, Reese S (2015) Numerical analysis of layered fiber composites accounting for the onset of delamination. Adv Eng Softw 80:4–11CrossRefGoogle Scholar
  69. 69.
    Slobbe AT, Hendriks MAN, Rots JG (2013) Systematic assessment of directional mesh bias with periodic boundary conditions: applied to the crack band model. Eng Fract Mech 109:186–208CrossRefGoogle Scholar
  70. 70.
    Sluys LJ, de Borst R (1992) Wave propagation and localization in a rate-dependent cracked medium—model formulation and one-dimensional examples. Int J Solids Struct 29:2945–2958CrossRefGoogle Scholar
  71. 71.
    Song K, Davila CG, Rose CA (2008) Guidelines and parameter selection for the simulation of progressive delamination. (2008) ABAQUS User’s Conference. Newport, RI, United StatesGoogle Scholar
  72. 72.
    Stier B, Bednarcyk BA, Simon JW, Reese S (2015) Investigation of micro-scale architectural effects on damage of composites. NASA/TM2015-218740 Google Scholar
  73. 73.
    Stier B, Simon JW, Reese S (2015) Finite element analysis of layered fiber composite structures accounting for the materials microstructure and delamination. Appl Compos Mater 22:171–187CrossRefGoogle Scholar
  74. 74.
    Tavares RP, Melro AR, Bessa MA, Turon A, Liu WK, Camanho PP (2016) Mechanics of hybrid polymer composites: analytical and computational study. Comput Mech 57:405–421CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    Toro S, Sanchez PJ, Podesta JM, Blanco PJ, Huespe AE, Feijoo RA (2016) Cohesive surface model for fracture based on a two-scale formulation: computational implementation aspects. Comput Mech 58:549–585CrossRefMATHMathSciNetGoogle Scholar
  76. 76.
    Turon A, Camanho PP, Costa J, Davila CG (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089CrossRefGoogle Scholar
  77. 77.
    Turon A, Davila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682CrossRefGoogle Scholar
  78. 78.
    Voyiadjis GZ, Deliktas B (2000) A coupled anisotropic damage model for the inelastic response of composite materials. Comput Methods Appl Mech Eng 183:159–199CrossRefMATHGoogle Scholar
  79. 79.
    Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing modelhealing materials. Int J Plast 27:1025–1044CrossRefMATHGoogle Scholar
  80. 80.
    Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842CrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    Williams KV, Vziri R, Poursartip A (2003) A physically based continuum damage mechanics model for thin laminated composite structures. Int J Solids Struct 40:2267–2300CrossRefMATHGoogle Scholar
  82. 82.
    Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40:3839–3864CrossRefMATHGoogle Scholar
  83. 83.
    Whang C, Zhang H, Shi G (2012) 3D Finite element simulation of impact damage of laminated plates using solid-shell interface elements. Appl Mech Mater 130–134:766–770Google Scholar
  84. 84.
    Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43:583–612CrossRefMATHGoogle Scholar
  85. 85.
    Wu L, Sket F, Molina-Aldareguia JM, Makradi A, Adam L, Doghri I, Noels L (2015) A study of composite laminates failure using an anisotropic gradient-enhanced damage mean-field homogenization model. Compos Struct 126:246–264CrossRefGoogle Scholar
  86. 86.
    Xie D, Waas AM (2006) Discrete cohesive yone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73:1783–1796CrossRefGoogle Scholar
  87. 87.
    Xin SH, Wen HM (2015) A progressive damage model for fiber reinforced plastic composites subjected to impact loading. Int J Impact Eng 75:40–52CrossRefGoogle Scholar
  88. 88.
    Xu W, Waas AM (2016) Modeling damage growth using the crack band model; effect of different strain measures. Eng Fract Mech 152:126–138CrossRefGoogle Scholar
  89. 89.
    Yuan Z, Fish J (2016) Are the cohesive zone models necessary for delamination analysis? Comput Methods Appl Mech Eng 310:567–604CrossRefMathSciNetGoogle Scholar
  90. 90.
    Ye L (1988) Role of matrix resin in delamination onset and growth in composite laminates. Compos Sci Technol 33:257–277CrossRefGoogle Scholar
  91. 91.
    Zheng Q-S, Betten J (1996) On damage effective stress and equivalence hypothesis. Int J Damage Mech 5:219–240CrossRefGoogle Scholar
  92. 92.
    Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier, AmsterdamMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jaan-Willem Simon
    • 1
  • Daniel Höwer
    • 1
  • Bertram Stier
    • 2
  • Stefanie Reese
    • 1
  • Jacob Fish
    • 3
  1. 1.Institute of Applied MechanicsRWTH Aachen UniversityAachenGermany
  2. 2.Collier Research Corporation, HyperSizerNewport NewsUSA
  3. 3.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA

Personalised recommendations