Advertisement

Computational Mechanics

, Volume 60, Issue 3, pp 379–392 | Cite as

A new fast direct solver for the boundary element method

  • S. Huang
  • Y. J. Liu
Original Paper

Abstract

A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman–Morrison–Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

Keywords

Fast direct solver Boundary element method 3-D potential problem 

References

  1. 1.
    Brebbia CA, Dominguez J (1994) Boundary elements: an introductory course. WIT Press, AshurstzbMATHGoogle Scholar
  2. 2.
    Banerjee P, Butterfield R (1994) The boundary element methods in engineering. McGraw-Hill, New YorkzbMATHGoogle Scholar
  3. 3.
    Bonnet M (1999) Boundary integral equation methods for solids and fluids. Meccanica 34(4):301–302. doi: 10.1023/a:1004795120236 CrossRefGoogle Scholar
  4. 4.
    Aliabadi M (2002) The boundary element method: applications in solids and structures, vol 2. Wiley, ChicesterzbMATHGoogle Scholar
  5. 5.
    Mukherjee S, Mukherjee YX (2005) Boundary methods: elements, contours, and nodes. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu YJ (2009) Fast multipole boundary element method—theory and applications in engineering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Rokhlin V (1985) Rapid solution of integral-equations of classical potential-theory. J Comput Phys 60(2):187–207CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Shen L, Liu YJ (2007) An adaptive fast multipole boundary element method for three-dimensional potential problems. Comput Mech 39(6):681–691CrossRefzbMATHGoogle Scholar
  10. 10.
    Liu YJ, Shen L (2007) A dual BIE approach for large-scale modeling of 3-D electrostatic problems with the fast multipole boundary element method. Int J Numer Meth Eng 71(7):837–855. doi: 10.1002/nme.2000 CrossRefzbMATHGoogle Scholar
  11. 11.
    Bapat MS, Liu YJ (2010) A new adaptive algorithm for the fast multipole boundary element method. Comput Model Eng Sci 58(2):161–184Google Scholar
  12. 12.
    Liu YJ, Nishimura N, Otani Y, Takahashi T, Chen XL, Munakata H (2005) A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. J Appl Mech 72(1):115–128. doi: 10.1115/1.1825436 CrossRefzbMATHGoogle Scholar
  13. 13.
    Liu YJ (2006) A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems. Int J Numer Meth Eng 65(6):863–881. doi: 10.1002/nme.1474 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Liu YJ (2008) A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation. Comput Mech 42(5):761–773. doi: 10.1007/s00466-008-0274-2 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Shen L, Liu YJ (2006) An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the burton-miller formulation. Comput Mech 40(3):461–472. doi: 10.1007/s00466-006-0121-2 CrossRefzbMATHGoogle Scholar
  16. 16.
    Bapat MS, Shen L, Liu YJ (2009) Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems. Eng Anal Boundary Elem 33(8–9):1113–1123. doi: 10.1016/j.enganabound.2009.04.005 CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Wu HJ, Liu YJ, Jiang WK (2012) Analytical integration of the moments in the diagonal form fast multipole boundary element method for 3D acoustic wave problems. Eng Anal Boundary Elem 36(2):248–254. doi: 10.1016/j.enganabound.2011.08.004 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Song JM, Chew WC (1995) Multilevel fast-multipole algorithm for solving combined field integral-equations of electromagnetic scattering. Microw Opt Technol Lett 10(1):14–19CrossRefGoogle Scholar
  19. 19.
    Song JM, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10):1488–1493CrossRefGoogle Scholar
  20. 20.
    Darve E, Have P (2003) Fast multipole method for low-frequency electromagnetic scattering. In: Proceedings of the computational fluid and solid mechanics 2003, vols 1 and 2, pp 1299–1302Google Scholar
  21. 21.
    Tsuji P, Ying L (2011) A fast directional algorithm for high-frequency electromagnetic scattering. J Comput Phys 230(14):5471–5487. doi: 10.1016/j.jcp.2011.02.013 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4):299. doi: 10.1115/1.1482087 CrossRefGoogle Scholar
  23. 23.
    Liu YJ, Nishimura N (2006) The fast multipole boundary element method for potential problems: a tutorial. Eng Anal Boundary Elem 30(5):371–381. doi: 10.1016/j.enganabound.2005.11.006 CrossRefzbMATHGoogle Scholar
  24. 24.
    Liu YJ, Mukherjee S, Nishimura N, Schanz M, Ye W, Sutradhar A, Pan E, Dumont NA, Frangi A, Saez A (2011) Recent advances and emerging applications of the boundary element method. Appl Mech Rev 64(3):1–38. doi: 10.1115/1.4005491 Google Scholar
  25. 25.
    Hackbusch W (1999) A sparse matrix arithmetic based on \({\cal{H}}\)-matrices. Part I: introduction to \({\cal{H}}\)-matrices. Computing 62(2):89–108. doi: 10.1007/s006070050015 CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hackbusch W, Khoromskij BN (2000) A sparse \({\cal{H}}\)-matrix arithmetic. Computing 64(1):21–47zbMATHMathSciNetGoogle Scholar
  27. 27.
    Hackbusch W, Börm S (2002) Data-sparse approximation by adaptive \({\cal{H}}^{2}\)-matrices. Computing 69(1):1–35. doi: 10.1007/s00607-002-1450-4 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Boundary Elem 27(5):405–422CrossRefzbMATHGoogle Scholar
  29. 29.
    Ambikasaran S (2013) Fast algorithms for dense numerical linear algebra and applications. Stanford University, StanfordGoogle Scholar
  30. 30.
    Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86:565–589CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70:1–24CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Bebendorf M, Grzhibovskis R (2006) Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29(14):1721–1747. doi: 10.1002/mma.759 CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Smajic J, Andjelic Z, Bebendorf M (2007) Fast BEM for eddy-current problems using h-matrices and adaptive cross approximation. IEEE Trans Magn 43(4):1269–1272. doi: 10.1109/tmag.2006.890971 CrossRefGoogle Scholar
  34. 34.
    Maaskant R, Mittra R, Tijhuis A (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propag 56(11):3440–3451. doi: 10.1109/tap.2008.2005471 CrossRefGoogle Scholar
  35. 35.
    Maerten F (2010) Adaptive cross-approximation applied to the solution of system of equations and post-processing for 3D elastostatic problems using boundary element method. Eng Anal Boundary Elem 34:483–491CrossRefzbMATHGoogle Scholar
  36. 36.
    Saad Y (2003) Iterative methods for sparse linear system, 2nd edn. The Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  37. 37.
    Chen K (2005) Matrix preconditioning techniques and applications. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  38. 38.
    Martinsson PG, Rokhlin V (2005) A fast direct solver for boundary integral equations in two dimensions. J Comput Phys 205(1):1–23. doi: 10.1016/j.jcp.2004.10.033 CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Corona E, Martinsson P-G, Zorin D (2015) An o(N) direct solver for integral equations on the plane. Appl Comput Harm Anal 38(2):284–317. doi: 10.1016/j.acha.2014.04.002 CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Greengard L, Gueyffier D, Martinsson P-G, Rokhlin V (2009) Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer 18:243–275CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Ho KL, Greengard L (2012) A fast direct solver for structured linear systems by recursive skeletonization. SIAM J Sci Comput 34(5):A2507–A2532CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Lai J, Ambikasaran S, Greengard LF (2014) A fast direct solver for high frequency scattering from a large cavity in two dimensions. SIAM J Sci Comput 36(6):B887–B903CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Ambikasaran S, Darve E (2013) An \(\text{ O }(N\text{ log }N)\) fast direct solver for partial hierarchically semi-separable matrices. J Sci Comput 57(3):477–501. doi: 10.1007/s10915-013-9714-z CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Coulier P, Pouransari H, Darve E (2015) The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems. arXiv preprint arXiv:1508.01835
  45. 45.
    Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124–127CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Woodbury MA (1950) Inverting modified matrices. https://en.wikipedia.org/wiki/Woodbury_matrix_identity
  47. 47.
    Woolfe F, Liberty E, Rokhlin V, Tygert M (2008) A fast randomized algorithm for the approximation of matrices. Appl Comput Harmon Anal 25(3):335–366. doi: 10.1016/j.acha.2007.12.002 CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Liberty E, Woolfe F, Martinsson PG, Rokhlin V, Tygert M (2007) Randomized algorithms for the low-rank approximation of matrices. Proc Nat Acad Sci USA 104(51):20167–20172. doi: 10.1073/pnas.0709640104 CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Martinsson P-G, Rokhlin V, Tygert M (2011) A randomized algorithm for the decomposition of matrices. Appl Comput Harmon Anal 30(1):47–68. doi: 10.1016/j.acha.2010.02.003 CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Halko N, Martinsson PG, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288. doi: 10.1137/090771806 CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Nabors K, White J (1991) Fastcap: a multipole accelerated 3-D capacitance extraction program. IEEE Trans Comput Aided Des Integr Circuits Syst 10(11):1447–1459CrossRefGoogle Scholar
  52. 52.
    Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic analysis of complicated 3-d structures. IEEE Trans Comput Aided Des Integr Circuits Syst 16(10):1059–1072CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Institute for Computational Mechanics and its ApplicationsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations