Skip to main content

Advertisement

Log in

Dynamic model of open shell structures buried in poroelastic soils

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2(3):419–451

    Article  Google Scholar 

  2. Arany L, Bhattacharya S, Macdonald J, Hogan SJ (2015) Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy 18:2171–2197

    Article  Google Scholar 

  3. Ariza MP, Domínguez J (2002) General BE approach for three-dimensional dynamic fracture analysis. Eng Anal Bound Elem 26:639–651

    Article  MATH  Google Scholar 

  4. Basu U, Chopra AK (2003) Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput Method Appl Mech Eng 192:1337–1375

    Article  MATH  Google Scholar 

  5. Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722

    Article  MATH  Google Scholar 

  6. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  MathSciNet  Google Scholar 

  7. Bonnet G (1987) Basic singular solutions for a poroelastic medium in the dynamic range. J Acoust Soc Am 82(5):1758–1762

    Article  Google Scholar 

  8. Bordón JDR, Aznárez JJ, Maeso O (2014) A 2D BEM–FEM approach for time harmonic fluid-structure interaction analysis of thin elastic bodies. Eng Anal Bound Elem 43:19–29

    Article  MathSciNet  MATH  Google Scholar 

  9. Bordón JDR, Aznárez JJ, Maeso O (2016) Two-dimensional numerical approach for the vibration isolation analysis of thin walled wave barriers in poroelastic soils. Comput Geotech 71:168–179

    Article  Google Scholar 

  10. Bougacha S, Tassoulas JL (1991) Seismic analysis of gravity dams. I: modeling of sediments. J Eng Mech ASCE 117(8):1826–1837

    Article  Google Scholar 

  11. Bucalem ML, Bathe KJ (1993) Higher-order MITC general shell elements. Int J Numer Methods Eng 36:3729–3754

    Article  MathSciNet  MATH  Google Scholar 

  12. Buchanan JL, Gilbert RP (1997) Transmission loss in the far field over a one-layer seabed assuming the biot sediment model. J Appl Math Mech 2:121–135

    MathSciNet  MATH  Google Scholar 

  13. Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc R Soc Lond 323:201–210

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng AHD, Badmus T, Beskos DE (1991) Integral equation for dynamic poroelasticity in frequency domain with BEM solution. J Eng Mech ASCE 117(5):1136–1157

    Article  Google Scholar 

  15. Domínguez J (1991) An integral formulation for dynamic poroelasticity. J Appl Mech 58:588–591

    Article  MATH  Google Scholar 

  16. Domínguez J (1992) Boundary element approach for dynamic poroelastic problems. Int J Numer Methods Eng 35:307–324

    Article  MATH  Google Scholar 

  17. Domínguez J, Ariza MP, Gallego R (2000) Flux and traction boundary elements without hypersingular or strongly singular integrals. Int J Numer Methods Eng 48:111–135

    Article  MathSciNet  MATH  Google Scholar 

  18. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  19. Gallego R, Domínguez J (1996) Hypersingular BEM for transient elastodynamics. Int J Numer Methods Eng 39:1681–1705

    Article  MathSciNet  MATH  Google Scholar 

  20. Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MATH  Google Scholar 

  21. Hong HK, Chen J (1988) Derivations of integral equations of elasticity. J Eng Mech ASCE 114(6):1028–1044

    Article  Google Scholar 

  22. Kassir MK, Xu J (1988) Interaction functions of a rigid strip bonded to saturated elastic half-space. Int J Solids Struct 24(9):915–936

    Article  MATH  Google Scholar 

  23. Kaynia AM, Kausel E (1982) Dynamic stiffness and seismic response of pile groups. Research report R83-03, Massachusetts Institute of Technology, Cambridge, MA

  24. Lee PS, Bathe KJ (2004) Development of MITC isotropic triangular shell finite elements. Comput Struct 82:945–962

    Article  Google Scholar 

  25. Liingaard M, Andersen L, Ibsen L (2007) Impedance of flexible suction caissons. Earthq Eng Struct D 36:2249–2271

    Article  Google Scholar 

  26. Lin CH, Lee VW, Trifunac MD (2005) The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid. Soil Dyn Earthq Eng 25:205–223

    Article  Google Scholar 

  27. Maeso O, Aznárez JJ, Domínguez J (2004) Three-dimensional models of reservoir sediment and effects on the seismic response of arch dams. Earthq Eng Struct D 33(10):1103–1123

    Article  Google Scholar 

  28. Maeso O, Aznárez JJ, García F (2005) Dynamic impedances of piles and groups of piles in saturated soils. Comput Struct 83:769–782

    Article  Google Scholar 

  29. Manolis GD, Beskos DE (1989) Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity. Acta Mech 76(1–2):89–104

    Article  MATH  Google Scholar 

  30. Mantič V (1993) A new formula for the C-matrix in the Somigliana identity. J Elast 33:191–201

    Article  MathSciNet  MATH  Google Scholar 

  31. Mantič V, París F (1995) Existence and evaluation of the two free terms in the hypersingular boundary integral equation of potential theory. Eng Anal Bound Elem 16:253–260

    Article  Google Scholar 

  32. Marburg S (2008) Computational acoustics of noise propagation in fluids—finite and boundary element methods, chapter 11. Discretization requirements: how many elements per wavelength are necessary?, pp 309–332. Springer

  33. Messner M, Schanz M (2011) A regularized collocation boundary element method for linear poroelasticity. Comput Mech 47:669–680

    Article  MathSciNet  MATH  Google Scholar 

  34. Messner M, Schanz M (2012) A symmetric Galerkin boundary element method for 3d linear poroelasticity. Acta Mech 223:1751–1768

    Article  MathSciNet  MATH  Google Scholar 

  35. Mi Y, Aliabadi MH (1992) Dual boundary element method for three-dimensional fracture mechanics analysis. Eng Anal Bound Elem 10:161–171

    Article  Google Scholar 

  36. Oñate E (2013) Structural analysis with the finite element method. Linear Statics, vol 2. Beams, Plates and Shells. CIMNE, Springer

  37. Padrón LA, Aznárez JJ, Maeso O (2007) BEM–FEM coupling model for the dynamic analysis of piles and pile groups. Eng Anal Bound Elem 31:473–484

  38. Parish H (1979) A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration. Comput Method Appl Mech Eng 20:323–350

    Article  MATH  Google Scholar 

  39. Portela A, Aliabadi MH, Rooke DP (1992) The dual boundary element method: effective implementation for crack problems. Int J Numer Methods Eng 33:1269–1287

    Article  MATH  Google Scholar 

  40. Stolarski H, Belytschko T (1982) Membrane locking and reduced integration for curved elements. J Appl Mech 49:172–176

    Article  MATH  Google Scholar 

  41. Tadeu A, António J, Amado P, Godinho L (2007) Sound pressure level attenuation provided by thin rigid screens coupled to tall buildings. J Sound Vib 304:479–496

    Article  Google Scholar 

  42. von Estorff O (2000) Boundary elements in acoustics. WIT Press, Ashurst

    MATH  Google Scholar 

  43. Wrobel LC, Aliabadi MH (2002) The boundary element method. Wiley, Hoboken

    MATH  Google Scholar 

  44. Yang HTY, Saigal S, Masud A, Kapania RK (2000) A survey of recent shell finite elements. Int J Numer Methods Eng 47:101–127

    Article  MathSciNet  MATH  Google Scholar 

  45. Zienkiewicz OC, Taylor RL (2005) The finite element method, 6th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to recognise and thank Professor Fernando Medina (Universidad de Sevilla) for contributing with many ideas behind this work, which emerged in meetings during Spring 2012. This work was supported by the Subdirección General de Proyectos de Investigación of the Ministerio de Economía y Competitividad (MINECO) of Spain and FEDER through Research Project BIA2014-57640-R. J.D.R. Bordón is recipient of the research fellowship FPU13-01224 from the Ministerio de Educación, Cultura y Deportes (MECD) of Spain. The authors are grateful for this support. Gmsh has been used as mesh generator, pre- and post-processing utility [20] in this paper. We would like to appreciate the effort of this team in providing this software to the community. Finally, the authors wish to thank the Reviewers for their comments, which have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. R. Bordón.

Appendices

Appendix 1: Description of matrices \(\mathbf {I}_\mathrm {S}^\mathrm {i}\), \(\mathbf {I}_\mathrm {H}^\mathrm {i}\), \(\mathbf {U}^*\), \(\mathbf {T}^*\), \(\mathbf {D}^*\) and \(\mathbf {S}^*\)

Let \(\mathbf {x}\) and \(\mathbf {n}\) be the position and unit normal vectors of the observation point, while \(\mathbf {x}^\mathrm {i}\) and \(\mathbf {n}^\mathrm {i}\) are those of the collocation point. The distance vector between both points is \(\mathbf {r}=\mathbf {x}-\mathbf {x}^\mathrm {i}\), its norm is \(r=|\mathbf {r}|\), and the distance derivative is denoted as \(r_{,j}=\partial r / \partial x_j\). The partial derivatives of the distance with respect to the unit normal vectors are \(\partial r/\partial n = r_{j}n_j\) and \(\partial r/\partial n^\mathrm {i} = -r_{j}n_j^\mathrm {i}\). For the sake of brevity, the wavenumbers are rewritten as \(k_j=k_{\mathrm {P}j}\) and \(k_3=k_\mathrm {S}\), and the following frequency-dependent parameters are defined:

$$\begin{aligned}&J = \frac{1}{\hat{\rho }_{22}\omega ^2}, \; Z = \frac{\hat{\rho }_{12}}{\hat{\rho }_{22}}, \; \alpha _j = k_j^2-\frac{\mu }{\lambda +2\mu }k_3^2, \nonumber \\&\beta _j = \frac{\mu }{\lambda +2\mu }k_j^2-\frac{k_1^2 k_2^2}{k_3^2} \end{aligned}$$
(55)

The matrices \(\mathbf {I}_\mathrm {S}^\mathrm {i}\) and \(\mathbf {I}_\mathrm {H}^\mathrm {i}\) appearing respectively in SBIE and HBIE are:

$$\begin{aligned} \mathbf {I}_\mathrm {S}^\mathrm {i}= \left[ \begin{array}{cc} J &{} 0 \\ 0 &{} \delta _\textit{lk} \end{array}\right] ,\; \mathbf {I}_\mathrm {H}^\mathrm {i}= \left[ \begin{array}{cc} 1 &{} 0 \\ 0 &{} \delta _\textit{lk} \end{array} \right] \end{aligned}$$
(56)

The fundamental solution matrix \(\mathbf {U}^*\) is:

$$\begin{aligned} \mathbf {U}^*= \left[ \begin{array}{cc} -\tau ^*_{\textit{00}} &{} u^*_{\textit{0k}} \\ -\tau ^*_{\textit{l0}} &{} u^*_\textit{lk} \end{array} \right] \end{aligned}$$
(57)

where

$$\begin{aligned} \tau ^{*}_\textit{00}&= \frac{1}{4\pi } \eta \end{aligned}$$
(58)
$$\begin{aligned} \eta&= \frac{1}{k_1^2-k_2^2} \left[ \frac{\alpha _1}{r}e^{-ik_1r}- \frac{\alpha _2}{r}e^{-ik_2r}\right] \end{aligned}$$
(59)
$$\begin{aligned} u^{*}_\textit{0k}&= -\frac{1}{4\pi } \varTheta r_{,k}\end{aligned}$$
(60)
$$\begin{aligned} \varTheta&= \frac{Q/R-Z}{\lambda +2\mu }\frac{1}{k_1^2-k_2^2}\nonumber \\&\quad \times \left[ \left( \frac{1}{r^2}+\frac{ik_1}{r}\right) e^{-ik_1r}- \left( \frac{1}{r^2}+\frac{ik_2}{r}\right) e^{-ik_2r}\right] \end{aligned}$$
(61)
$$\begin{aligned} \tau ^{*}_\textit{l0}&= \frac{1}{4\pi J} \varTheta r_{,l}\end{aligned}$$
(62)
$$\begin{aligned} u^{*}_\textit{lk}&= \frac{1}{4\pi \mu }\left( \delta _\textit{lk}\psi - \chi r_{,l} r_{,k} \right) \end{aligned}$$
(63)
$$\begin{aligned} \psi&= \frac{1}{r}e^{-ik_3r} + \frac{1}{r}\left( \frac{1}{ik_3r}+\frac{1}{(ik_3r)^2}\right) e^{-ik_3r} - \frac{1}{k_1^2-k_2^2} \cdot \nonumber \\&\left[ \frac{\beta _1}{r}\left( \frac{1}{ik_1r}+\frac{1}{(ik_1r)^2}\right) e^{-ik_1r}\right. \nonumber \\&\quad \left. -\frac{\beta _2}{r}\left( \frac{1}{ik_2r}+\frac{1}{(ik_2r)^2}\right) e^{-ik_2r}\right] \end{aligned}$$
(64)
$$\begin{aligned} \chi&= \frac{1}{r}\left( 1+\frac{3}{ik_3r}+\frac{3}{(ik_3r)^2}\right) e^{-ik_3r} - \frac{1}{k_1^2-k_2^2}\cdot \nonumber \\&\left[ \frac{\beta _1}{r}\left( 1+\frac{3}{ik_1r}+\frac{3}{(ik_1r)^2}\right) e^{-ik_1r}\right. \nonumber \\&\quad \left. -\frac{\beta _2}{r}\left( 1+\frac{3}{ik_2r}+\frac{3}{(ik_2r)^2}\right) e^{-ik_2r}\right] \end{aligned}$$
(65)

The fundamental solution matrix \(\mathbf {T}^*\) is:

$$\begin{aligned} \mathbf {T}^*= \left[ \begin{array}{cc} -(\textit{U}^*_{n\textit{00}}+JX'^*_jn_j) &{} t^*_{\textit{0k}} \\ -\textit{U}^*_{n\textit{l0}} &{} t^*_\textit{lk} \end{array} \right] \end{aligned}$$
(66)

where

$$\begin{aligned} U^{*}_\textit{n00}+JX'^*_j n_j&= \frac{1}{4\pi } W_0 \frac{\partial r}{\partial n}\end{aligned}$$
(67)
$$\begin{aligned} W_0&= Z \varTheta - J \frac{\partial \eta }{\partial r}\end{aligned}$$
(68)
$$\begin{aligned} t^{*}_\textit{0k}&= \frac{1}{4\pi } \left[ \textit{T}_{01} r_{,k} \frac{\partial r}{\partial n} + \textit{T}_{02} n_k \right] \end{aligned}$$
(69)
$$\begin{aligned} \textit{T}_{01}&= -2\mu \left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) \end{aligned}$$
(70)
$$\begin{aligned} \textit{T}_{02}&= -\lambda \left( \frac{\partial \varTheta }{\partial r}+\frac{2}{r}\varTheta \right) - 2\mu \frac{1}{r}\varTheta + \frac{Q}{R}\eta \end{aligned}$$
(71)
$$\begin{aligned} U^{*}_\textit{nl0}&= \frac{1}{4\pi \mu } \left[ W_1 r_{,l} \frac{\partial r}{\partial n} + W_2 n_l \right] \end{aligned}$$
(72)
$$\begin{aligned} W_1&= Z\chi - \mu \left( \frac{\partial \varTheta }{\partial r} - \frac{1}{r}\varTheta \right) \end{aligned}$$
(73)
$$\begin{aligned} W_2&= -Z\psi - \mu \frac{1}{r}\varTheta \end{aligned}$$
(74)
$$\begin{aligned} t^{*}_\textit{lk}&= \frac{1}{4\pi } \left[ T_1 r_{,l} r_{,k} \frac{\partial r}{\partial n} \right. \nonumber \\&\quad \left. +\,T_2\left( \delta _\textit{lk}\frac{\partial r}{\partial n} + r_{,k} n_l \right) + T_3 r_{,l} n_k\right] \end{aligned}$$
(75)
$$\begin{aligned} T_1&= -2\left( \frac{\partial \chi }{\partial r} - \frac{2}{r}\chi \right) \end{aligned}$$
(76)
$$\begin{aligned} T_2&= \frac{\partial \psi }{\partial r} - \frac{1}{r}\chi \end{aligned}$$
(77)
$$\begin{aligned} T_3&= -\frac{2}{r}\chi +\frac{\lambda }{\mu }\left( \frac{\partial \psi }{\partial r} - \frac{\partial \chi }{\partial r} -\frac{2}{r}\chi \right) \nonumber \\&\quad + \frac{Q}{R}\frac{1}{J}\varTheta \end{aligned}$$
(78)

The fundamental solution matrix \(\mathbf {D}^*\) is:

$$\begin{aligned} \mathbf {D}^* = \left[ \begin{array}{cc} -d^*_{\textit{00}} &{} d^*_{\textit{0k}} \\ -d^*_{\textit{l0}} &{} d^*_{lk} \end{array} \right] \end{aligned}$$
(79)

where

$$\begin{aligned} d^{*}_\textit{00}&= \frac{1}{4\pi J} W_0 \frac{\partial r}{\partial n^\mathrm {i}}\end{aligned}$$
(80)
$$\begin{aligned} d^{*}_\textit{0k}&= \frac{1}{4\pi \mu }\left( -W_1r_{,k}\frac{\partial r}{\partial n^\mathrm {i}}+W_2n_k^\mathrm {i}\right) \end{aligned}$$
(81)
$$\begin{aligned} d^{*}_\textit{l0}&= \frac{1}{4\pi J}\left( -T_{01} r_{,l} \frac{\partial r}{\partial n^\mathrm {i}} + T_{02} n_l^\mathrm {i} \right) \end{aligned}$$
(82)
$$\begin{aligned} d^{*}_\textit{lk}&= \frac{1}{4\pi } \left[ T_1 r_{,l} r_{,k} \frac{\partial r}{\partial n^\mathrm {i}} - T_2\left( -\delta _\textit{lk}\frac{\partial r}{\partial n^\mathrm {i}}+r_{,l} n_k^\mathrm {i}\right) - T_3 r_{,k} n_l^\mathrm {i}\right] \end{aligned}$$
(83)

The fundamental solution matrix \(\mathbf {S}^*\) is:

$$\begin{aligned} \mathbf {S}^*= \left[ \begin{array}{cc} -s^*_\textit{00} &{} s^*_{\textit{0k}} \\ -s^*_\textit{l0} &{} s^*_\textit{lk} \end{array} \right] \end{aligned}$$
(84)

where

$$\begin{aligned} s^{*}_\textit{00}&= \frac{1}{4\pi }\left[ Q_1\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}}+Q_2\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) \right] \end{aligned}$$
(85)
$$\begin{aligned} Q_1&= \frac{Z^2}{\mu }\chi - 2Z\left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) + J\left( \frac{\partial ^2 \eta }{\partial r^2}-\frac{1}{r}\frac{\partial \eta }{\partial r}\right) \end{aligned}$$
(86)
$$\begin{aligned} Q_2&= \frac{Z^2}{\mu }\psi +2Z\frac{1}{r}\varTheta -J\frac{1}{r}\frac{\partial \eta }{\partial r} \end{aligned}$$
(87)
$$\begin{aligned} s^{*}_\textit{0k}&= \frac{1}{4\pi }\left\{ S_{01}r_{,k}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}}+S_{02}n_k\frac{\partial r}{\partial n^\mathrm {i}}\right. \nonumber \\&\left. \quad +\,S_{03}\left[ n_k^\mathrm {i}\frac{\partial r}{\partial n}+r_{,k}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) \right] \right\} \end{aligned}$$
(88)
$$\begin{aligned} S_{01}&= -2Z\left( \frac{\partial \chi }{\partial r}-\frac{2}{r}\chi \right) \nonumber \\&\quad -2\mu \left[ -\frac{\partial ^2 \varTheta }{\partial r^2}+\frac{3}{r}\left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) \right] \end{aligned}$$
(89)
$$\begin{aligned} S_{02}&= \frac{Q}{R}\left( \frac{Z}{J}\varTheta -\frac{\partial \eta }{\partial r}\right) \nonumber \\&\quad +\,Z\left[ \frac{\lambda }{\mu }\left( \frac{\partial \psi }{\partial r}-\frac{\partial \chi }{\partial r}-\frac{2}{r}\chi \right) -\frac{2}{r}\chi \right] \nonumber \\&\quad +\,\lambda \left[ \frac{\partial ^2 \varTheta }{\partial r^2}+\frac{2}{r}\left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) \right] \nonumber \\&\quad +\, 2\mu \frac{1}{r}\left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) \end{aligned}$$
(90)
$$\begin{aligned} S_{03}&= -Z\left( \frac{\partial \psi }{\partial r}-\frac{1}{r}\chi \right) -2\mu \frac{1}{r}\left( \frac{\partial \varTheta }{\partial r}-\frac{1}{r}\varTheta \right) \end{aligned}$$
(91)
$$\begin{aligned} s_\textit{l0}^*&= \frac{1}{4\pi }\Bigg \{ -S_{01} r_{,l}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}} +\, S_{02} n_l^\mathrm {i}\frac{\partial r}{\partial n}\nonumber \\&\quad - S_{03}\left[ -n_l\frac{\partial r}{\partial n^\mathrm {i}}+r_{,l}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) \right] \Bigg \} \end{aligned}$$
(92)
$$\begin{aligned} s^{*}_\textit{lk} =&\frac{\mu }{4\pi } \Bigg \{S_1\left[ r_{,l}n_k^\mathrm {i}\frac{\partial r}{\partial n} - r_{,k}n_l\frac{\partial r}{\partial n^\mathrm {i}} \right. \nonumber \\&\left. \quad -\,\delta _\textit{lk}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}} + r_{,k}r_{,l}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) \right] \nonumber \\&\quad +\,S_2\left( r_{,k}n_l^\mathrm {i}\frac{\partial r}{\partial n} - r_{,l}n_k\frac{\partial r}{\partial n^\mathrm {i}}\right) + S_3 r_{,l}r_{,k}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}} \nonumber \\&\quad +S_4\left[ \delta _\textit{lk}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) +n_ln_k^\mathrm {i}\right] + S_5 n_k n_l^\mathrm {i}\Bigg \} \end{aligned}$$
(93)
$$\begin{aligned} S_1&= -\frac{\partial ^2 \psi }{\partial r^2} + \frac{1}{r}\left( \frac{\partial \psi }{\partial r} + 3\frac{\partial \chi }{\partial r} - \frac{6}{r}\chi \right) \end{aligned}$$
(94)
$$\begin{aligned} S_2&= 2\frac{\lambda }{\mu }\left[ -\frac{\partial ^2 \psi }{\partial r^2} + \frac{\partial ^2 \chi }{\partial r^2}+ \frac{1}{r}\left( \frac{\partial \psi }{\partial r} + \frac{\partial \chi }{\partial r}- \frac{4}{r}\chi \right) \right] \nonumber \\&\quad +\frac{4}{r}\left( \frac{\partial \chi }{\partial r}-\frac{2}{r}\chi \right) - 2\frac{Q}{R}\frac{1}{J}\left( \frac{\partial \varTheta }{\partial r} - \frac{1}{r}\varTheta \right) \end{aligned}$$
(95)
$$\begin{aligned} S_3&= 4 \left[ -\frac{\partial ^2 \chi }{\partial r^2} + \frac{1}{r}\left( 5\frac{\partial \chi }{\partial r}-\frac{8}{r}\chi \right) \right] \end{aligned}$$
(96)
$$\begin{aligned} S_4&= \frac{2}{r}\left( -\frac{\partial \psi }{\partial r}+\frac{1}{r}\chi \right) \end{aligned}$$
(97)
$$\begin{aligned} S_5&= \frac{4}{r^2}\chi +\frac{\lambda }{\mu }\frac{4}{r}\left( -\frac{\partial \psi }{\partial r} + \frac{\partial \chi }{\partial r} + \frac{2}{r}\chi \right) \nonumber \\&\quad +\frac{\lambda ^2}{\mu ^2}\left[ -\frac{\partial ^2 \psi }{\partial r^2} + \frac{\partial ^2 \chi }{\partial r^2} + \frac{2}{r}\left( -\frac{\partial \psi }{\partial r} + 2\frac{\partial \chi }{\partial r}+\frac{1}{r}\chi \right) \right] \nonumber \\&\quad +\frac{Q}{R}\frac{1}{J}\left[ -2\frac{\lambda }{\mu }\left( \frac{\partial \varTheta }{\partial r}+\frac{2}{r}\varTheta \right) -\frac{4}{r}\varTheta +\frac{Q}{R \mu }\eta \right] \end{aligned}$$
(98)

Appendix 2: Transformation of some fundamental solution terms

The following relationships and the Stokes’ theorem let turn strongly singular and hypersingular surface integrals into weakly singular surface integrals and nearly singular line integrals. Most of them may also be seen in Domínguez et al. [17]. Note that Equation (B20) of [17] contained an erratum as it lacks two terms. The present Eq. (104) corrects this.

$$\begin{aligned} \frac{\mathbf {n}\cdot \mathbf {n}^\mathrm {i}}{r^3}= & {} -\frac{3}{r^3}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}} +\left( \varvec{\nabla }\times \frac{\mathbf {r}\times \mathbf {n}^\mathrm {i}}{r^3}\right) \cdot \mathbf {n} \end{aligned}$$
(99)
$$\begin{aligned} \frac{r_{,l}n_{,k}-r_{,k}n_{,l}}{r^2}= & {} \epsilon _\textit{lkj}\left( \varvec{\nabla }\times \frac{\mathbf {e}_j}{r}\right) \cdot \mathbf {n} \end{aligned}$$
(100)
$$\begin{aligned} \frac{r_{,k}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) }{r^2}= & {} -\frac{n_k}{r^2}\frac{\partial r}{\partial n^\mathrm {i}} +\left( \varvec{\nabla }\times \frac{\mathbf {e}_k\times \mathbf {n}^\mathrm {i}}{r}\right) \cdot \mathbf {n} \end{aligned}$$
(101)
$$\begin{aligned} \frac{r_{,l}r_{,k}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) }{r^3}= & {} -\frac{5 r_{,l} r_{,k}}{r^3}\frac{\partial r}{\partial n}\frac{\partial r}{\partial n^\mathrm {i}} -\frac{r_{,l}n_k^\mathrm {i}+r_{,k}n_l^\mathrm {i}}{r^3}\frac{\partial r}{\partial n} \nonumber \\&+\left[ \varvec{\nabla }\times \left( r_{,l}r_{,k}\frac{\mathbf {r}\times \mathbf {n}^\mathrm {i}}{r^3}\right) \right] \cdot \mathbf {n} \end{aligned}$$
(102)
$$\begin{aligned} \frac{n_k}{r^3}= & {} \frac{3 r_{,k}}{r^3}\frac{\partial r}{\partial n} +\left( \varvec{\nabla }\times \frac{\mathbf {r}\times \mathbf {e}_k}{r^3}\right) \cdot \mathbf {n} \end{aligned}$$
(103)
$$\begin{aligned} \frac{r_{,l}r_{,k}r_{,j}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) }{r^2}= & {} -\frac{1}{3}\frac{r_{,j} n_k n_l^\mathrm {i}}{r^2} -\frac{1}{3}\frac{r_{,l} n_k n_j^\mathrm {i}}{r^2}\nonumber \\&+\,\delta _\textit{lk}\frac{1}{3}\frac{r_{,j}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) }{r^2} \nonumber \\&+\,\delta _\textit{jk}\frac{1}{3}\frac{r_{,l}\left( \mathbf {n}\cdot \mathbf {n}^\mathrm {i}\right) }{r^2} -\frac{r_{,l}r_{,j}n_k}{r^2}\frac{\partial r}{\partial n^\mathrm {i}} \nonumber \\&+\,\frac{1}{3}\left[ \varvec{\nabla }\times \left( r_{,l}r_{,j}\frac{\mathbf {e}_k\times \mathbf {n}^\mathrm {i}}{r}\right) \right] \cdot \mathbf {n} \end{aligned}$$
(104)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordón, J.D.R., Aznárez, J.J. & Maeso, O. Dynamic model of open shell structures buried in poroelastic soils. Comput Mech 60, 269–288 (2017). https://doi.org/10.1007/s00466-017-1406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1406-3

Keywords

Navigation