Skip to main content
Log in

Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

When immersed in solution, surface-active particles interact with solute molecules and migrate along gradients of solute concentration. Depending on the conditions, this phenomenon could arise from either diffusiophoresis or the Marangoni effect, both of which involve strong interactions between the fluid and the particle surface. We introduce here a numerical approach that can accurately capture these interactions, and thus provide an efficient tool to understand and characterize the phoresis of soft particles. The model is based on a combination of the extended finite element—that enable the consideration of various discontinuities across the particle surface—and the particle-based moving interface method—that is used to measure and update the interface deformation in time. In addition to validating the approach with analytical solutions, the model is used to study the motion of deformable vesicles in solutions with spatial variations in both solute concentration and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Invest 26(1):57–64

    Google Scholar 

  2. Krystal H (2015) Integration and self healing: Affect trauma, alexithymia. Routledge, Abingdon

    Google Scholar 

  3. Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6(4):726–738

    Article  Google Scholar 

  4. Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Janus particle synthesis and assembly. Adv Mater 22(10):1060–1071

    Article  Google Scholar 

  5. Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(03):350–356

    Article  MATH  Google Scholar 

  6. Derjaguin BV, Sidorenkov GP, Zubashchenkov EA, Kiseleva EV (1947) Kinetic phenomena in boundary films of liquids. Kolloidn. Zh 9:335–347

    Google Scholar 

  7. Lin MMJ, Prieve DC (1983) Electromigration of latex induced by a salt gradient. J Colloid Interface Sci 95(2):327–339

    Article  Google Scholar 

  8. Lechnick WJ, Shaeiwitz JA (1984) Measurement of diffusiophoresis in liquids. J Colloid Interface Sci 102(1):71–87

    Article  Google Scholar 

  9. Anderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21(1):61–99

    Article  MATH  Google Scholar 

  10. Brady JF (2011) Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J Fluid Mech 667:216–259

    Article  MathSciNet  MATH  Google Scholar 

  11. Jlicher F, Prost J (2009) Generic theory of colloidal transport. Eur Phys J E 29(1):27–36

    Article  Google Scholar 

  12. Michelin S, Lauga E, Bartolo D (2013) Spontaneous autophoretic motion of isotropic particles. Phys Fluids ( 1994-present) 25(6):061701

    Google Scholar 

  13. Keh HJ, Weng JC (2001) Diffusiophoresis of colloidal spheres in nonelectrolyte gradients at small but finite Pclet numbers. Colloid Polym Sci 279(4):305–311

    Article  Google Scholar 

  14. Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88(2):1143–1155

    Article  Google Scholar 

  15. Glaser N, Adams DJ, Böker A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22(12):5227–5229

    Article  Google Scholar 

  16. Shin S, Um E, Sabass B, Ault JT, Rahimi M, Warren PB, Stone HA (2016) Size-dependent control of colloid transport via solute gradients in dead-end channels. PNAS 113:257–261

    Article  Google Scholar 

  17. Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613

    Article  Google Scholar 

  18. Kreissl P, Holm C, de Graaf J (2016) The efficiency of self-phoretic propulsion mechanisms with surface reaction heterogeneity. J Chem Phys. doi:10.1063/1.4951699

  19. Khair AS (2013) Diffusiophoresis of colloidal particles in neutral solute gradients at finite Peclet number. J Fluid Mech 731:64–94

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta S, Sreeja KK, Thakur S (2015) Autonomous movement of a chemically powered vesicle. Phys Rev E 92(4):42703

    Article  Google Scholar 

  21. Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  22. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  23. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252

    Article  MathSciNet  MATH  Google Scholar 

  24. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang L et al (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193.21:2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu WK et al (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195.13:1722–1749

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu WK, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39.3:211–222

    MathSciNet  MATH  Google Scholar 

  28. Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794

    Article  MathSciNet  MATH  Google Scholar 

  29. Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426

    Article  MathSciNet  MATH  Google Scholar 

  30. Cottet GH, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(03):415–438

    Article  MathSciNet  MATH  Google Scholar 

  31. Hou TY, Lowengrub JS, Shelley MJ (2001) Boundary integral methods for multicomponent fluids and multiphase materials. J Comput Phys 169(2):302–362

    Article  MathSciNet  MATH  Google Scholar 

  32. Bazhlekov IB, Anderson PD, Meijer HEH (2004) Nonsingular boundary integral method for deformable drops in viscous flows. Phys Fluids (1994-Present) 16(4):1064–1081

    Article  MathSciNet  MATH  Google Scholar 

  33. Hyvaluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100(24):246001

    Article  Google Scholar 

  34. Debye P, Robert LC (1959) Flow of liquid hydrocarbons in porous Vycor. J Appl Phys 30(6):843–849

    Article  Google Scholar 

  35. Joseph P et al (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97.15:156104

    Article  Google Scholar 

  36. Ho TA et al (2011) Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci 108.39:16170–16175

    Article  Google Scholar 

  37. Foucard L, Vernerey FJ (2016) A particle based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng. doi:10.1002/nme.5191

  38. Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127

    MathSciNet  MATH  Google Scholar 

  39. Vernerey FJ, Farsad M (2011) An Eulerian/XFEM formulation for the large deformation of cortical cell membrane. Comput Methods Biomech Biomed Eng 14(05):433–445

    Article  Google Scholar 

  40. Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699

    Article  Google Scholar 

  41. Farsad M, Vernerey FJ (2012) An XFEM? Based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267

    Article  MathSciNet  MATH  Google Scholar 

  42. Kabiri Mi, Vernerey FJ (2013) An xfem based multiscale approach to fracture of heterogeneous media. Int J Multiscale Comput Eng 11(6)

  43. Vernerey FJ, Farsad M (2014) A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading. J Math Biol 68(4):989–1022

    Article  MathSciNet  MATH  Google Scholar 

  44. Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489

    Article  MathSciNet  MATH  Google Scholar 

  45. Vernerey FJ (2011) A theoretical treatment on the mechanics of interfaces in deformable porous media. Int J Solids Struct 48(22):3129–3141

    Article  Google Scholar 

  46. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  47. Anderson JL, Prieve DC (1991) Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7(2):403–406

    Article  Google Scholar 

  48. Golestanian R, Liverpool TB, Ajdari A (2005) Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys Rev Lett 94(22):220801

    Article  Google Scholar 

  49. Anderson JL, Prieve DC (1984) Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Sep Purif Methods 13(1):67–103

    Article  Google Scholar 

  50. Fanton X, Cazabat AM (1998) Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14(9):2554–2561 Chicago

    Article  Google Scholar 

  51. Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  52. Sukumar N, Chopp DL, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200

    Article  MathSciNet  MATH  Google Scholar 

  53. Moes N, Bechet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669

    Article  MathSciNet  MATH  Google Scholar 

  54. Sauerland H, Fries TP (2013) The stable XFEM for two-phase flows. Comput Fluids 87:41–49

    Article  MathSciNet  MATH  Google Scholar 

  55. Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13(1):333–356

    Article  MathSciNet  MATH  Google Scholar 

  56. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, Englewood

  57. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  58. Babuska I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appli Mech Eng 201:91–111

    Article  MathSciNet  MATH  Google Scholar 

  59. Bechet E et al (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64.8:1033–1056

    Article  MATH  Google Scholar 

  60. Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302

    Article  MathSciNet  Google Scholar 

  61. Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561

    Article  MathSciNet  MATH  Google Scholar 

  62. Rusanov AI, Prokhorov VA (1996) Interfacial tensiometry, vol 3. Elsevier, London

    Book  Google Scholar 

  63. Lamb H (1945) Hydrodynamics, vol 43. Dover, New York

    MATH  Google Scholar 

  64. Chen PY, Keh HJ (2003) Boundary effects on osmophoresis: motion of a spherical vesicle parallel to two plane walls. Chem Eng Sci 58(19):4449–4464

    Article  Google Scholar 

  65. Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids (1994-present) 22(11):111901

    Article  Google Scholar 

  66. Akalp U et al (2015) Determination of the polymer-solvent interaction parameter for PEG hydrogels in water: Application of a self learning algorithm. Polymer 66:135–147

    Article  Google Scholar 

  67. Foucard LC, Vernerey FJ (2015) An X-FEM based numerical asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98

    Article  MathSciNet  MATH  Google Scholar 

  68. Linke GT, Lipowsky R, Gruhn T (2006) Osmotically induced passage of vesicles through narrow pores. EPL 74(5):916

    Article  Google Scholar 

  69. Hannig K (1982) New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis 3(5):235–243

    Article  Google Scholar 

  70. Nguyen TLA, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, Snoulten VE (2008) Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci 105(39):14981–14986

    Article  Google Scholar 

  71. Vernerey FJ (2016) A mixture approach to investigate interstitial growth in engineering scaffolds. Biomech Model Mechanobiol 15(2):259–278

    Article  Google Scholar 

  72. Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Science Foundation under the CAREER award 1350090 and by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number 1R01AR065441. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Vernerey.

Appendices

Appendix 1: Expressions and derivatives of shape functions

In the numerical study, XFEM is implemented in the element shape functions to account for the discontinuities. For split elements, the extended interpolation matrices \({\mathbf {N}}^4(x)\) and \({\mathbf {N}}^9(x)\) in Eq. (35) and (36) have the form:

$$\begin{aligned} {\mathbf {N}}^4(x)= & {} \left[ \begin{array}{cccccc}N_1^4&...&N_4^4&\varPsi _1N_1^4&...&\varPsi _4N_4^4\end{array}\right] \nonumber \\ {\mathbf {N}}^9({\mathbf {x}})= & {} \left[ \begin{array}{cccccccccc}N_1^9&{}0&{}...&{}N_9^9&{}0&{}\varPsi _1N_1^9&{}0&{}...&{}\varPsi _9N_9^9&{}0\\ 0&{}N_1^9&{}0&{}...&{}N_9^9&{}0&{}\varPsi _1N_1^9&{}0&{}...&{}\varPsi _9N_9^9\end{array}\right] \nonumber \\ \end{aligned}$$
(52)

where \(\varPsi _I=H-H_I\) is the Heaviside enrichment function applying on the Ith node. For normal elements that are not splitted, the Heaviside enrichment functions vanish to zero and only the normal shape functions are retain. On the interface, a simple \(1-D\) shape function is used to interpolate the quantities on the interface :

$$\begin{aligned} \mathbf {\overline{N}}=[\overline{N}_1 \overline{N}_2] \end{aligned}$$
(53)

To compute the deformation rate of the fluid, the rate of deformation of fluid and the divergence of fluid are written as:

$$\begin{aligned} {\mathbf {D}}=(\mathbf {\nabla }{\mathbf {v}})^s={\mathbf {B}}\cdot {\mathbf {v}}^e\;\;\; \text {and}\;\;\; \mathbf {\nabla }\cdot {\mathbf {v}}={{\hat{\mathbf {B}}}}\cdot {\mathbf {v}}^e \end{aligned}$$

we write the rate \({\mathbf {B}}\) and \({\hat{\mathbf {B}}}\) matrices that are related to the nodal velocities to deformation rate and velocity divergence in the cylindrical coordinates as

$$\begin{aligned} \begin{aligned}&{\mathbf {B}}=\left[ \begin{array}{cccc}{\mathbf {B}}_1&...&{\mathbf {B}}_{n9+m9}\end{array}\right] ,\quad \hat{{\mathbf {B}}}=\left[ \begin{array}{ccc}\hat{{\mathbf {B}}}_1&...&\hat{{\mathbf {B}}}_{n9+m9}\end{array}\right] \\&{ with} \\&{\mathbf {B}}_I=\left[ \begin{array}{cc}\frac{\partial N_I^9({\mathbf {x}})}{\partial \rho }&{}0\\ 0&{} \frac{\partial N_I^9({\mathbf {x}})}{\partial z}\\ \frac{N_I^9({\mathbf {x}})}{\rho }&{}\frac{N_I^9({\mathbf {x}})}{\rho }\\ \frac{\partial N_I^9({\mathbf {x}})}{\partial z}&{}\frac{\partial N_I^9({\mathbf {x}})}{\partial \rho }\end{array}\right] , \\&\hat{\mathbf {B}}_{I}=\left[ \begin{array}{cc}\frac{\partial N_I^9({\mathbf {x}})}{\partial \rho }+\frac{N^9_I({\mathbf {x}})}{r}&\frac{\partial N_I^9({\mathbf {x}})}{\partial z}\end{array}\right] \end{aligned} \end{aligned}$$
(54)

where the subscript n corresponds to the normal element nodes and m is corresponded to the enriched degrees of freedom. Similarly, the matrix that relates to the spatial rate of change in concentration reads:

$$\begin{aligned} \begin{aligned}&{\mathbf {B}}^4=\left[ \begin{array}{ccc}{\mathbf {B}}^4_1&...&{\mathbf {B}}^4_{n4+m4}\end{array}\right] \\&with\\&{\mathbf {B}}^4_I=\left[ \begin{array}{cc}\frac{\partial N_I^4({\mathbf {x}})}{\partial \rho }&\frac{\partial N_I^9({\mathbf {x}})}{\partial z} \end{array}\right] ^T, \end{aligned} \end{aligned}$$
(55)

Appendix 2: Discretized weak form

With the matrix forms of the fields given, plug in the matrix form for \({\mathbf {v}}\), p in Eq. (30) and c in Eq. (31), the discretized weak form for fluid is then read:

$$\begin{aligned}&\sum _{e=1}^{nel}\{\varvec{\omega }_v^{eT}\}\left[ \int _{\varOmega ^e}(r{\mathbf {B}}^T\cdot {\mathbf {B}}\cdot {\mathbf {v}}^e-{\mathbf {B}}^T\cdot {\mathbf {N}}^4\cdot {\mathbf {p}}^e)rd\varOmega ^e\right. \nonumber \\&\quad +\int _{\varGamma ^e}\left( {{\mathbf {N}}^9}^T\cdot {\mathbf {a}}^T\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\cdot \mathbf {\lambda }^{e+}rd\varGamma ^e \right. \nonumber \\&\quad \left. -\int _{\varGamma ^e}{{\mathbf {N}}^9}^T\cdot {\mathbf {a}}^T\cdot \frac{r^-}{l^-}\mathbf {\overline{N}}\mathbf {\lambda }^{e-}\right) rd{\varGamma ^e}+\left. \int _{\varGamma ^e}{{\mathbf {N}}^9}^T\cdot \overline{{\mathbf {f}}}rd\varGamma ^e\right] \nonumber \\&\quad +\sum _{e=1}^{nel}\{\varvec{\omega }_p\}^T\left[ \int _{\varOmega ^e}{{\mathbf {N}}^4}^T\cdot \hat{{\mathbf {B}}}\cdot {\mathbf {v}}^erd\varOmega ^e\right. \nonumber \\&\quad +\left. \int _{\varGamma ^e}{{\mathbf {N}}^4_{[]}}^T\cdot \mathbf {\overline{N}}\cdot \mathbf {\lambda }^prd\varGamma ^e\right] \nonumber \\&\quad +\sum _{e=1}^{nel}\{\varvec{\omega }_{\lambda _p}\}^T\left[ \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot {\mathbf {N}}^4_{[]}\cdot {\mathbf {p}}^erd\varGamma ^e-\int _{\varGamma ^e}\overline{{\mathbf {N}}}^T\cdot \overline{{\mathbf {f}}} r d\varGamma ^e\right] \nonumber \\&\quad +\sum _{e=1}^{nel}\{\varvec{\omega }_{\lambda ^+}^e\}^T\left[ \int _{\varGamma ^e}\mathbf {\overline{N}}\cdot \left( r^+{\mathbf {a}}^T\cdot {\mathbf {P}}^\perp \cdot \mathbf {B_{+}}\right. \right. \nonumber \\&\quad +\left. \left. \frac{r^+}{l^+}{\mathbf {a}}^T\cdot {\mathbf {N}}_{+}\right) \cdot {\mathbf {v}}^erd\varGamma ^e\right. \nonumber \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\cdot {\mathbf {v}}_ard\varGamma ^e-\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\cdot \mathbf {\overline{v}}^\parallel rd\varGamma ^e\right] \nonumber \\&\quad +\sum _{e=1}^{nel}\{\omega _{\lambda -}\}^T\left[ \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot (r{\mathbf {a}}^T\cdot {\mathbf {P}}^\perp \cdot {\mathbf {B}}_-\right. \nonumber \\&\quad -\left. \frac{r^-}{l^-}{\mathbf {a}}\cdot {\mathbf {N}}_v)\cdot {\mathbf {v}}^erd\varGamma ^e\right. +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^-}{l^-}\mathbf {\overline{N}}\cdot \mathbf {\overline{v}}^{\parallel e}rd\varGamma ^e\right] \nonumber \\&\quad +\sum _{e=1}^{nel}\{\varvec{\omega }_{\overline{v}^\parallel }\}^T\left[ \int _{\varGamma ^e}\mathbf {\overline{N}}\cdot \left( -\frac{r^+}{l^+}{\mathbf {a}}\cdot {\mathbf {N}}_++\frac{r^-}{l^-}{\mathbf {a}}\cdot {\mathbf {N}}_- \right) \cdot {\mathbf {v}}^erd\varGamma ^e\right. \nonumber \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\cdot \mathbf {\lambda }^+rd\varGamma ^e+\int _{\varGamma ^e}\mathbf {\overline{N}}\cdot \left( -\frac{r^-}{l^-}\mathbf {\overline{N}}\cdot \mathbf {\lambda }^-\right) rd\varGamma ^e\right. \nonumber \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \left( \frac{r^+}{l^+}-\frac{r^-}{l^-}\right) \mathbf {\overline{N}}\cdot \mathbf {\overline{v}}^\parallel rd\varGamma ^e\right. \nonumber \\&\quad -\left. \int _{\varGamma ^e}\overline{{\mathbf {N}}}^T\cdot \left( \frac{r^+}{l^+}{\mathbf {v}}_a \right) rd\varGamma ^e\right] =0 \end{aligned}$$
(56)

where the \(+\) and − sign on the \({\mathbf {N}}\) and \({\mathbf {B}}\) are associated with the interpolation on the \(+\) or − side of the interface respectively. The matrix \({\mathbf {N}}^4_{[]}=\left[ \begin{array}{cccccc}0&...&0&N_1^4&...&N_4^4\end{array}\right] \) is associated with the pressure jump at the interface.

In a similar way, the discretized weak form for transportation of solute reads:

$$\begin{aligned} \begin{aligned}&\sum _{e=1}^{nel}\{\varvec{\omega }_c\}^T\left[ \int _{\varOmega ^e}{{\mathbf {N}}^4}^T\cdot {\mathbf {N}}^4\cdot {{\dot{\mathbf {c}}}^e}rd\varOmega ^e\right. \\&\quad +\left. \int _{\varOmega ^e}{{\mathbf {N}}^4}^T\cdot {\mathbf {v}}^{eT}\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}^erd\varOmega ^e\right. \\&\quad +\left. \int _{\varOmega ^e}{{\mathbf {B}}^4}^T\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}^erd\varGamma ^e\right. \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot {\mathbf {N}}_{[]}^4\cdot {\mathbf {c}}^erd\varGamma ^e-\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot [-{\mathbf {n}}\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}_t\right. \\&\quad +\left. \frac{1}{K}({\mathbf {N}}^+-{\mathbf {N}}^-)\cdot {\mathbf {c}}_t+K{\mathbf {P}}^\parallel \cdot {\mathbf {B}}^4\cdot {\mathbf {q}}^\parallel ]rd\varGamma ^e\right. \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot [-{\mathbf {n}}\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}_t+\frac{1}{K}({\mathbf {N}}^+-{\mathbf {N}}^-)\cdot {\mathbf {c}}_t\right. \\&\quad +\left. K{\mathbf {P}}^\parallel \cdot {\mathbf {B}}^4\cdot {\mathbf {q}}^\parallel ]rd\varGamma ^e\right] \\&\quad +\sum _{e=1}^{nel}\{\varvec{\omega }_{\lambda c}\}^T\left[ \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot {\mathbf {N}}_{[]}^4\cdot {\mathbf {c}}^erd\varGamma ^e\right. \\&\quad +\left. \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot [-{\mathbf {n}}\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}_t+\frac{1}{K}({\mathbf {N}}^+-{\mathbf {N}}^-)\cdot {\mathbf {c}}_t\right. \\&\quad +\left. K{\mathbf {P}}^\parallel \cdot {\mathbf {B}}^4\cdot {\mathbf {q}}^\parallel ]rd\varGamma ^e\right] =0 \end{aligned} \end{aligned}$$

where \({\mathbf {v}}^e\) is the calculated fluid velocity from the stokes equation, \({\mathbf {c}}_t\) is the nodal value of solute concentration obtained from previous timestep, \(\dot{{\mathbf {c}}}^e\) is the rate of change of solute concentration. The tangential flux \({\mathbf {q}}^\parallel \) is computed according to Eq. (11) for solute concentration or (18) for temperature using the calculated nodal value \({\mathbf {c}}_t\).

Appendix 3: Matrix form

For Stokes flow problem (Eq. 33), in each element, the vector \({\mathbf {d}}(t)\) is composed of the fluid degrees of freedom \({\mathbf {d}}(t)=\left[ {\mathbf {v}}(t),{\mathbf {p}}(t)\right] ^T\) and \(\mathbf {\overline{d}}(t)\) is composed of the interface degrees of freedom \(\mathbf {\overline{d}}(t)=\left[ \overline{v}^\parallel ,\lambda _p,\lambda ^+,\lambda ^-\right] ^T\). The submatrix \({\mathbf {K}}^T\) and \(\mathbf {\overline{K}}^T\) are corresponding to fluid domain \(\varOmega \) and interface \(\varGamma \) respectively, while \({\mathbf {I}}^t_1\) and \({\mathbf {I}}^T_1\) are associated to fluid-interface interactions. The global force vector \({\mathbf {F}}^t_f\) is corresponding to the external force as well as the force produced by the interface, and \(\mathbf {\overline{F}}^T_f\) is associated with the jump conditions on the interface including pressure and tangential velocity. The detailed expressions of for the submatrices in (33) are:

$$\begin{aligned} {\mathbf {K}}^t_e= & {} \left[ \begin{array}{cc}{\mathbf {K}}_{vv}^e&{}{\mathbf {K}}_{vp}^e\\ {\mathbf {K}}_{pv}^e&{}0\end{array}\right] \quad \mathbf {\overline{K}}^t_e=\left[ \begin{array}{cccc}{\mathbf {K}}^e_{\overline{v}^\parallel \overline{v}^\parallel }&{}0&{}{\mathbf {K}}^e_{\overline{v}^\parallel \lambda ^+}&{}{\mathbf {K}}^e_{\overline{v}^\parallel \lambda ^-}\\ 0&{}0&{}0&{}0\\ {\mathbf {K}}^e_{\lambda ^+\overline{v}^\parallel }&{}0&{}0&{}0\\ {\mathbf {K}}^e_{\lambda ^-\overline{v}^\parallel }&{}0&{}0&{}0\end{array}\right] \\ {\mathbf {I}}^t_{e1}= & {} \left[ \begin{array}{cc}{\mathbf {K}}^e_{\overline{v}^\parallel v}&{}0 \\ 0&{}{\mathbf {K}}^e_{\lambda _p p}\\ {\mathbf {K}}^e_{\lambda ^+v}&{}0\\ {\mathbf {K}}^e_{\lambda ^-v}&{}0\end{array}\right] \quad {\mathbf {I}}^t_{e2}=\left[ \begin{array}{cccc}0&{}0&{}{\mathbf {K}}^e_{v\lambda ^+}&{}{\mathbf {K}}^e_{v\lambda ^-}\\ 0&{}{\mathbf {K}}^e_{p\lambda _p}&{}0&{}0\end{array}\right] \\ {\mathbf {F}}^t_{fe}= & {} \left[ \begin{array}{cc}{\mathbf {F}}^e_v&{\mathbf {F}}^e_p\end{array}\right] ^T\quad \quad \mathbf {\overline{F}}^t_{fe}=\left[ \begin{array}{cccc}{\mathbf {F}}^e_{\overline{v}^\parallel }&{\mathbf {F}}^e_{\lambda _p}&{\mathbf {F}}^e_{\lambda +}&0\end{array}\right] ^T \end{aligned}$$

with the element matrices forms:

$$\begin{aligned}&{\mathbf {K}}_{vv}^e=\int _{\varOmega ^e}r{\mathbf {B}}^T\cdot {\mathbf {B}}\;rd\varOmega ^e\\&{\mathbf {K}}_{vp}^e=\int _{\varOmega ^e}-{\mathbf {B}}^T\cdot {\mathbf {N}}^4\;rd\varOmega ^e \\&{\mathbf {K}}_{v\lambda ^+}^e=\int _{\varGamma ^e}{\mathbf {N}}_+^T\cdot {\mathbf {a}}\frac{r^+}{l^+}\mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{v\lambda ^-}^e=\int _{\varGamma ^e}-{\mathbf {N}}_+^T\cdot {\mathbf {a}}\frac{r^-}{l^-}\mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{pv}^e=\int _{\varOmega ^e}-{{\mathbf {N}}^4}^T\cdot {\mathbf {B}}\;rd\varOmega ^e\\&{\mathbf {K}}_{p\lambda _p}=\int _{\varGamma ^e}{{\mathbf {N}}_{[]}^4}^T\cdot \mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{\overline{v}^\parallel v}=\int _{\varGamma ^e}\mathbf {\overline{N}}^T \cdot \left( -\frac{r}{l^+}{\mathbf {a}}\cdot {\mathbf {N}}^9_+-\frac{r}{l^-} {\mathbf {a}}\cdot {\mathbf {N}}^9_-\right) \;rd\varGamma ^e\\&{\mathbf {K}}_{\overline{v}^\parallel \overline{v}^\parallel }=\int _{\varGamma ^e} \mathbf {\overline{N}}^T\left( \frac{r^+}{l^+}+\frac{r^-}{l^-}\right) \overline{N}\;rd\varGamma ^e\\&{\mathbf {K}}_{\overline{v}^\parallel \lambda ^+}=\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{\overline{v}^\parallel \lambda ^-}=\int _{\varGamma ^e}-\mathbf {\overline{N}}^T\cdot \frac{r^-}{l^-}\mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{\lambda _p p}=\int _{\varGamma ^e}-\mathbf {\overline{N}}^T\cdot {\mathbf {N}}_{[]}^4\;rd\varGamma ^e\\&{\mathbf {K}}_{\lambda ^+v}=\int _{\varGamma ^e}\mathbf {\overline{N}}^T \cdot \left( r^+{\mathbf {a}}^T\cdot P^\perp \cdot \mathbf {B_+}+\frac{r^+}{l^+}{\mathbf {N}}_+\cdot {\mathbf {a}}\right) \;rd\varGamma ^e\\&{\mathbf {K}}_{\lambda ^+\overline{v}^\parallel }=\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^+}{l^+}\mathbf {\overline{N}}\;rd\varGamma ^e\\&{\mathbf {K}}_{\lambda ^-v}=\int _{\varGamma ^e} \mathbf {\overline{N}}^T\cdot \left( r^-{\mathbf {a}}^T\cdot {\mathbf {P}}^\perp \cdot {\mathbf {B}}_--\frac{r^-}{l^-}\mathbf {N_-\cdot a}\right) \;rd\varGamma ^e\\&{\mathbf {K}}_{\lambda ^-\overline{v}^\parallel }=\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \frac{r^-}{l^-}\mathbf {\overline{N}}\;rd\varGamma ^e \end{aligned}$$

with the element force vector:

$$\begin{aligned}&{\mathbf {F}}^e_v=\int _{\varOmega ^e}-{\mathbf {N}}^T\cdot \mathbf {\overline{f}}\;rd\varOmega ^e\\&{\mathbf {F}}^e_{\overline{v}^\parallel }=\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \left( \frac{r}{l^+}{\mathbf {v}}_a\right) \; rd\varGamma ^e\\&{\mathbf {F}}^e_{\lambda _p}=\int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot \mathbf {\overline{f}}\; rd\varGamma ^e\\&{\mathbf {F}}^e_{\lambda ^+}=\int _{\varGamma ^e}-\mathbf {\overline{N}}^T\cdot \frac{r}{l^+}{\mathbf {v}}_a\;rd\varGamma ^e \end{aligned}$$

Regarding the transport problem (34), the vector \([\dot{{\mathbf {d}}}_c]=[\dot{{\mathbf {c}}},0]^T\) is composed of the rate of change of the solute concentration and the submatrix \({\mathbf {A}}^T\) is corresponding to the fluid domain. The vector \([{\mathbf {d}}_c]=[{\mathbf {c}}, \lambda _c]^T\), is composed of the solute concentration degrees of freedom, with the submatrix \({\mathbf {K}}_c\) is associated with the convection and diffusion of solute molecules. The global force vector \({\mathbf {F}}_c\) accounts for the jump of concentration on the interface, as well as the emission or adsorption of solute on the interface. The detailed expressions of submatrices for Eq. (34) are:

$$\begin{aligned} {\mathbf {A}}^t_e= & {} \left[ \begin{array}{cc}{\mathbf {K}}^e_{cc}&{}0 \\ 0&{}0\end{array}\right] \quad \quad {{\mathbf {K}}_c^t}_e=\left[ \begin{array}{cc}{\mathbf {K}}^e_{cv}&{}{\mathbf {K}}^e_{c\lambda }\\ {\mathbf {K}}^e_{\lambda c}&{}0\end{array}\right] \nonumber \\ {\mathbf {F}}_c^e= & {} \left[ \begin{array}{cc}{\mathbf {F}}_c&{\mathbf {F}}_{\lambda c}\end{array}\right] \end{aligned}$$
(57)

and the element matrices written as:

$$\begin{aligned} {\mathbf {K}}^e_{cc}= & {} \int _{\varOmega ^e}{{\mathbf {N}}^4}^T\cdot {\mathbf {N}}^4\;rd\varOmega ^e\\ {\mathbf {K}}^e_{cv}= & {} \int _{\varOmega ^e}({{\mathbf {N}}^4}^T\cdot {\mathbf {N}}\cdot {\mathbf {v}}_s^T\cdot {\mathbf {B}}^4+{{\mathbf {B}}^4}^T\cdot {\mathbf {B}}^4)\;rd\varOmega ^e\\ {\mathbf {K}}^e_{c\lambda }= & {} \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot {\mathbf {N}}_{[]}^4\;rd\varGamma ^e\\ {\mathbf {K}}^e_{\lambda c}= & {} \int _{\varGamma ^e}{\mathbf {N}}_{[]}^4\cdot \mathbf {\overline{N}}\;rd\varGamma ^e \end{aligned}$$

with the force vector:

$$\begin{aligned} {\mathbf {F}}_c^e= & {} \int _{\varGamma ^e}-\mathbf {\overline{N}}^T\cdot [-{\mathbf {n}}^T\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}_t \\&+\frac{1}{K}({\mathbf {N}}^4_+-{\mathbf {N}}^4_-)\cdot {\mathbf {c}}_t+K{\mathbf {P}}^\parallel \cdot {\mathbf {B}}^4\cdot {\mathbf {q}}^\parallel ]\;rd\varGamma ^e. \\ {\mathbf {F}}_{\lambda c}^e= & {} \int _{\varGamma ^e}\mathbf {\overline{N}}^T\cdot [-{\mathbf {n}}^T\cdot {\mathbf {B}}^4\cdot {\mathbf {c}}_t \\&+\frac{1}{K}({\mathbf {N}}^4_+-{\mathbf {N}}^4_-)\cdot {\mathbf {c}}_t+K{\mathbf {P}}^\parallel \cdot {\mathbf {B}}^4\cdot {\mathbf {q}}^\parallel ]\;rd\varGamma ^e. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Vernerey, F. Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution. Comput Mech 60, 143–161 (2017). https://doi.org/10.1007/s00466-017-1399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1399-y

Keywords

Navigation