Advertisement

Computational Mechanics

, Volume 59, Issue 5, pp 831–842 | Cite as

Gradient plasticity crack tip characterization by means of the extended finite element method

  • E. Martínez-Pañeda
  • S. Natarajan
  • S. Bordas
Original Paper

Abstract

Strain gradient plasticity theories are being widely used for fracture assessment, as they provide a richer description of crack tip fields by incorporating the influence of geometrically necessary dislocations. Characterizing the behavior at the small scales involved in crack tip deformation requires, however, the use of a very refined mesh within microns to the crack. In this work a novel and efficient gradient-enhanced numerical framework is developed by means of the extended finite element method (X-FEM). A mechanism-based gradient plasticity model is employed and the approximation of the displacement field is enriched with the stress singularity of the gradient-dominated solution. Results reveal that the proposed numerical methodology largely outperforms the standard finite element approach. The present work could have important implications on the use of microstructurally-motivated models in large scale applications. The non-linear X-FEM code developed in MATLAB can be downloaded from www.empaneda.com/codes.

Keywords

Strain gradient plasticity Extended finite element method Crack tip fields Material length scale MATLAB 

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the European Research Council (ERC Starting Grant Agreement No. 279578). E. Martínez-Pañeda also acknowledges financial support from the Ministry of Economy and Competitiveness of Spain through Grant MAT2014-58738-C3-1, and the University of Oviedo through Grant UNOV-13-PF.

Supplementary material

466_2017_1375_MOESM1_ESM.pdf (195 kb)
Supplementary material 1 (pdf 194 KB)

References

  1. 1.
    Dahlberg CFO, Faleskog J (2013) An improved strain gradient plasticity formulation with energetic interfaces: theory and a fully implicit finite element formulation. Comput Mech 51:641–659MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bayerschen E, Böhlke T (2016) Power-law defect energy in a single-crystal gradient plasticity framework: a computational study. Comput Mech 58:13–27MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Martínez-Pañeda E, Niordson CF, Bardella L (2016) A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int J Solids Struct 96:288–299CrossRefGoogle Scholar
  4. 4.
    Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326–330CrossRefGoogle Scholar
  5. 5.
    Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271CrossRefzbMATHGoogle Scholar
  6. 6.
    Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity I. Theory. J Mech Phys Solids 47:1239–1263MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20:753–782CrossRefzbMATHGoogle Scholar
  8. 8.
    Hao S, Liu WK, Moran B, Vernerey F, Olson GB (2004) Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput Methods Appl Mech Eng 193:1865–1908CrossRefzbMATHGoogle Scholar
  9. 9.
    Vernerey F, Liu WK, Moran B (2007) Multi-scale micromorphic theory for hierarchical materials. J Mech Phys Solids 55:2603–2651MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    McDowell DL (2008) Viscoplasticity of heterogeneous metallic materials. Mater Sci Eng R 62:67–123CrossRefGoogle Scholar
  11. 11.
    McVeigh C, Liu WK (2008) Linking microstructure and properties through a predictive multiresolution continuum. Comput Methods Appl Mech Eng 197:3268–3290CrossRefzbMATHGoogle Scholar
  12. 12.
    O’Keeffe SC, Tang S, Kopacz AM, Smith J, Rowenhorst DJ, Spanos G, Liu WK, Olson GB (2015) Multiscale ductile fracture integrating tomographic characterization and 3-D simulation. Acta Mater 82:503–510CrossRefGoogle Scholar
  13. 13.
    Korn D, Elssner G, Cannon RM, Rühle M (2002) Fracture properties of interfacially doped \(\text{ Nb }\)\(\text{ Al }_2\text{ O }_3\) bicrystals: I, Fracture characteristics. Acta Mater 50:3881–3901CrossRefGoogle Scholar
  14. 14.
    Komaragiri U, Agnew SR, Gangloff RP, Begley MR (2008) The role of macroscopic hardening and individual length-scales on crack tip stress elevation from phenomenological strain gradient plasticity. J Mech Phys Solids 56:3527–3540CrossRefzbMATHGoogle Scholar
  15. 15.
    Tvergaard V, Niordson CF (2008) Size effects at a crack-tip interacting with a number of voids. Philos Mag 88:3827–3840CrossRefGoogle Scholar
  16. 16.
    Mikkelsen LP, Goutianos S (2009) Suppressed plastic deformation at blunt crack-tips due to strain gradient effects. Int J Solids Struct 46:4430–4436CrossRefzbMATHGoogle Scholar
  17. 17.
    Jiang H, Huang Y, Zhuang Z, Hwang KC (2001) Fracture in mechanism-based strain gradient plasticity. J Mech Phys Solids 49:979–993CrossRefzbMATHGoogle Scholar
  18. 18.
    Pan X, Yuan H (2011) Computational assessment of cracks under strain-gradient plasticity. Int J Fract 167:235–248CrossRefzbMATHGoogle Scholar
  19. 19.
    Pan X, Yuan H (2011) Applications of the element-free Galerkin method for singular stress analysis under strain gradient plasticity theories. Eng Fract Mech 78:452–461CrossRefGoogle Scholar
  20. 20.
    Martínez-Pañeda E, Betegón C (2015) Modeling damage and fracture within strain gradient plasticity. Int J Solids Struct 59:208–215CrossRefGoogle Scholar
  21. 21.
    Martínez-Pañeda E, Niordson CF (2016) On fracture in strain gradient plasticity. Int J Plast 80:154–167CrossRefGoogle Scholar
  22. 22.
    Martínez-Pañeda E, Niordson CF, Gangloff RP (2016) Strain gradient plasticity-based modeling of hydrogen environment assisted cracking. Acta Mater 117:321–332CrossRefGoogle Scholar
  23. 23.
    Martínez-Pañeda E, del Busto S, Niordson CF, Betegón C (2016) Strain gradient plasticity modeling of hydrogen diffusion to the crack tip. Int J Hydrog Energy 41:10265–10274CrossRefGoogle Scholar
  24. 24.
    Shi M, Huang Y, Jiang H, Hwang KC, Li M (2001) The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity. Int J Fract 112:23–41CrossRefGoogle Scholar
  25. 25.
    Hutchinson JW (1968) Singular behavior at the end of a tensile crack tip in a hardening material. J Mech Phys Solids 16:13–31CrossRefzbMATHGoogle Scholar
  26. 26.
    Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16:1–12CrossRefzbMATHGoogle Scholar
  27. 27.
    Hwang KC, Jiang H, Huang Y, Gao H (2003) Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field. Int J Plast 19:235–251CrossRefzbMATHGoogle Scholar
  28. 28.
    Niordson CF, Hutchinson JW (2003) On lower order strain gradient plasticity theories. Eur J Mech A Solids 22:771–778CrossRefzbMATHGoogle Scholar
  29. 29.
    Qu S, Huang Y, Jiang H, Liu C, Wu PD, Hwang KC (2004) Fracture analysis in the conventional theory of mechanism-based strain gradient (CMSG) plasticity. Int J Fract 129:199–220CrossRefzbMATHGoogle Scholar
  30. 30.
    Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195:501–515CrossRefzbMATHGoogle Scholar
  31. 31.
    Duflot M, Bordas S (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76:1123–1138MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Duflot M (2006) A study of the representation of cracks with level sets. Int J Numer Methods Eng 70:1261–1302MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Moumnassi M, Belouettar S, Béchet E, Bordas S, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200:774–796MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Fries TP, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. Int J Numer Methods Eng 89:1527–1558MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Methods Eng 74:1645–1669MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Fries TP (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75:503–532MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ventura G, Gracie R, Belytschko T (2008) Fast integration and weight function blending in the extended finite element method. Int J Numer Methods Eng 77:1–29MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Xiao QZ, Karihaloo BL (2007) Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM. Comput Methods Appl Mech Eng 196:1864–1873Google Scholar
  39. 39.
    Réthoré J, Roux S, Hild F (2010) Hybrid analytical and extended finite element method (HAX-FEM): a new enrichment procedure for cracked solids. Int J Numer Methods Eng 81:269–285Google Scholar
  40. 40.
    Natarajan S, Song C (2013) Representation of singular fields without asymptotic enrichment in the extended finite element method. Int J Numer Methods Eng 96:813–841MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Legay A, Wang HW, Belytschko T (2005) Strong and weak arbitrary discontinuities in spectral finite elements. Int J Numer Methods Eng 64:991–1008Google Scholar
  42. 42.
    Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381CrossRefzbMATHGoogle Scholar
  43. 43.
    Natarajan S, Bordas S, Mahapatra DR (2009) Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping. Int J Numer Methods Eng 80:103–134MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66:767–795MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Mousavi SE, Sukumar N (2010) Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199:3237–3249MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Bordas S, Natarajan S, Kerfriden P, Augarde C, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Eng 86:637–666CrossRefzbMATHGoogle Scholar
  47. 47.
    Xiao QZ, Karihaloo BL (2006) Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int J Numer Methods Eng 66:1378–1410CrossRefzbMATHGoogle Scholar
  48. 48.
    Chin EB, Lasserre JB, Sukumar N (2016) Modeling crack discontinuities without element-partitioning in the extended finite element method. Int J Numer Methods Eng. doi: 10.1002/nme.5436
  49. 49.
    Bower AF (2009) Applied mechanics of solids. CRC Press, Boca RatonGoogle Scholar
  50. 50.
    Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115CrossRefGoogle Scholar
  51. 51.
    González-Albuixech VF, Giner E, Taracón JE, Fuenmayor FJ, Gravouil A (2013) Convergence of domain integrals for stress intensity factor extraction in 2-D curved cracks problems with the extended finite element method. Int J Numer Methods Eng 94:740–757MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Robinson J (1987) Some new distortion measures for quadrilaterals. Finite Elem Anal Des 3:183–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Solid MechanicsTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology, MadrasChennaiIndia
  3. 3.Faculté des Sciences, de la Technologie et de la CommunicationUniversity of LuxembourgLuxembourg-KirchbergLuxembourg
  4. 4.School of EngineeringCardiff UniversityCardiffWales, UK

Personalised recommendations