Skip to main content
Log in

Solving large-scale finite element nonlinear eigenvalue problems by resolvent sampling based Rayleigh-Ritz method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the development and engineering applications of a new resolvent sampling based Rayleigh-Ritz method (RSRR) for solving large-scale nonlinear eigenvalue problems (NEPs) in finite element analysis. There are three contributions. First, to generate reliable eigenspaces the resolvent sampling scheme is derived from Keldysh’s theorem for holomorphic matrix functions following a more concise and insightful algebraic framework. Second, based on the new derivation a two-stage solution strategy is proposed for solving large-scale NEPs, which can greatly enhance the computational cost and accuracy of the RSRR. The effects of the user-defined parameters are studied, which provides a useful guide for real applications. Finally, the RSRR and the two-stage scheme is applied to solve two NEPs in the FE analysis of viscoelastic damping structures with up to 1 million degrees of freedom. The method is versatile, robust and suitable for parallelization, and can be easily implemented into other packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bathe K-J, Wilson EL (1973) Solution methods for eigenvalue problems in structural mechanics. Int J Numer Meth Eng 6(2):213–226

    Article  MATH  Google Scholar 

  2. Tisseur F, Meerbergen K (2001) The quadratic eigenvalue problem. SIAM Rev 43(2):235–286

    Article  MathSciNet  MATH  Google Scholar 

  3. Golub GH, Van der Vorst HA (2000) Eigenvalue computation in the 20th century. J Comput Appl Math 123(1):35–65

    Article  MathSciNet  MATH  Google Scholar 

  4. Mehrmann V, Voss H (2004) Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM-Mitteilungen 27(2):121–152

    Article  MathSciNet  MATH  Google Scholar 

  5. Bilasse M, Charpentier I, Daya EM, Koutsawa Y (2009) A generic approach for the solution of nonlinear residual equations. Part II: homotopy and complex nonlinear eigenvalue method. Comput Methods Appl Mech Eng 198(49):3999–4004

    Article  MATH  Google Scholar 

  6. Mehrmann V, Schröder C (2011) Nonlinear eigenvalue and frequency response problems in industrial practice. J Math Ind 1(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  7. Effenberger C (2013) Robust solution methods for nonlinear eigenvalue problems, Ph.D. thesis, École polytechnique fédérale de Lausanne

  8. Van Beeumen R (2015) Rational Krylov methods for nonlinear eigenvalue problems, Ph.D. thesis, KU Leuven

  9. Daya E, Potier-Ferry M (2001) A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput Struct 79(5):533–541

    Article  MathSciNet  Google Scholar 

  10. Duigou L, Daya EM, Potier-Ferry M (2003) Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells. Comput Methods Appl Mech Eng 192(11):1323–1335

    Article  MATH  Google Scholar 

  11. Neumaier A (1985) Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J Numer Anal 22(5):914–923

    Article  MathSciNet  MATH  Google Scholar 

  12. Voss H (2007) A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems. Comput Struct 85(17):1284–1292

    Article  MathSciNet  Google Scholar 

  13. Voss H (2004) An Arnoldi method for nonlinear eigenvalue problems. BIT Numer Math 44(2):387–401

    Article  MathSciNet  MATH  Google Scholar 

  14. Kressner D (2009) A block Newton method for nonlinear eigenvalue problems. Numer Math 114(2):355–372

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochstenbach ME, Notay Y (2009) Controlling inner iterations in the Jacobi-Davidson method. SIAM J Matrix Anal Appl 31(2):460–477

    Article  MathSciNet  MATH  Google Scholar 

  16. Effenberger C (2013) Robust successive computation of eigenpairs for nonlinear eigenvalue problems. SIAM J Matrix Anal Appl 34(3):1231–1256

    Article  MathSciNet  MATH  Google Scholar 

  17. Tisseur F (2000) Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl 309(1):339–361

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Beeumen R, Meerbergen K, Michiels W (2015) Compact rational Krylov methods for nonlinear eigenvalue problems. SIAM J Matrix Anal Appl 36(2):820–838

    Article  MathSciNet  MATH  Google Scholar 

  19. Mackey DS, Mackey N, Mehl C, Mehrmann V (2006) Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J Matrix Anal Appl 28(4):1029–1051

    Article  MathSciNet  MATH  Google Scholar 

  20. Sakurai T, Sugiura H (2003) A projection method for generalized eigenvalue problems using numerical integration. J Comput Appl Math 159(1):119–128

    Article  MathSciNet  MATH  Google Scholar 

  21. Polizzi E (2009) Density-matrix-based algorithm for solving eigenvalue problems. Phys Rev B 79(11):115112

    Article  Google Scholar 

  22. Asakura J, Sakurai T, Tadano H, Ikegami T, Kimura K (2009) A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett 1:52–55

    Article  MathSciNet  MATH  Google Scholar 

  23. Beyn W-J (2012) An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl 436(10):3839–3863

    Article  MathSciNet  MATH  Google Scholar 

  24. Yokota S, Sakurai T (2013) A projection method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett 5:41–44

    Article  MathSciNet  Google Scholar 

  25. Yamazaki I, Tadano H, Sakurai T, Ikegami T (2013) Performance comparison of parallel eigensolvers based on a contour integral method and a lanczos method. Parallel Comput 39(6):280–290

    Article  MathSciNet  Google Scholar 

  26. Xiao J, Meng S, Zhang C, Zheng C (2016) Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems. Comput Methods Appl Mech Eng 310:33–57

    Article  MathSciNet  Google Scholar 

  27. Peter Tang PT, Polizzi E (2014) FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J Matrix Anal Appl 35(2):354–390

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao J, Zhang C, Huang T-M, Sakurai T (2016) Solving large-scale nonlinear eigenvalue problems by rational interpolation and resolvent sampling based Rayleigh-Ritz method. Int J Numer Methods Eng. doi:10.1002/nme.5441

  29. Quraishi S, Schröder C, Mehrmann V (2014) Solution of large scale parametric eigenvalue problems arising from brake squeal modeling. Proc Appl Math Mech 14(1):891–892

    Article  Google Scholar 

  30. Zhang J, Zheng G (2007) The Biot model and its application in viscoelastic composite structures. J Vib Acoust 129(5):533–540

    Article  Google Scholar 

  31. Adhikari S, Pascual B (2009) Eigenvalues of linear viscoelastic systems. J Sound Vib 325(4):1000–1011

    Article  Google Scholar 

  32. Solovëv SI (2006) Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Appl 415(1):210–229

    Article  MathSciNet  Google Scholar 

  33. Conca C, Planchard J, Vanninathan M (1989) Existence and location of eigenvalues for fluid-solid structures. Comput Methods Appl Mech Eng 77(3):253–291

    Article  MathSciNet  MATH  Google Scholar 

  34. Nicoud F, Benoit L, Sensiau C, Poinsot T (2007) Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J 45(2):426–441

    Article  Google Scholar 

  35. Kirkup SM, Amini S (1993) Solution of the Helmholtz eigenvalue problem via the boundary element method. Int J Numer Methods Eng 36(2):321–330

    Article  MATH  Google Scholar 

  36. Xu J, Zhou A (2001) A two-grid discretization scheme for eigenvalue problems. Math Comput 70(233):17–25

    Article  MathSciNet  MATH  Google Scholar 

  37. Parks ML, De Sturler E, Mackey G, Johnson DD, Maiti S (2006) Recycling krylov subspaces for sequences of linear systems. SIAM J Sci Comput 28(5):1651–1674

    Article  MathSciNet  MATH  Google Scholar 

  38. Meerbergen K, Bai Z (2010) The lanczos method for parameterized symmetric linear systems with multiple right-hand sides. SIAM J Matrix Anal Appl 31(4):1642–1662

    Article  MathSciNet  MATH  Google Scholar 

  39. Berns-Müller J, Graham IG, Spence A (2006) Inexact inverse iteration for symmetric matrices. Linear Algebra Appl 416(2):389–413

    Article  MathSciNet  MATH  Google Scholar 

  40. Adhikari S, Friswell MI (2001) Eigenderivative analysis of asymmetric non-conservative systems. Int J Numer Methods Eng 51(6):709–733

    Article  MATH  Google Scholar 

  41. Betcke T, Higham NJ, Mehrmann V, Schröder C, Tisseur F (2013) NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans Math Softw 39(2):7

    Article  MathSciNet  MATH  Google Scholar 

  42. Feriani A, Perotti F, Simoncini V (2000) Iterative system solvers for the frequency analysis of linear mechanical systems. Comput Methods Appl Mech Eng 190(13):1719–1739

    Article  MATH  Google Scholar 

  43. Peters G, Wilkinson JH (1979) Inverse iteration, ill-conditioned equations and Newton’s method. SIAM Rev 21(3):339–360

    Article  MathSciNet  MATH  Google Scholar 

  44. Sleijpen GL, Van der Vorst HA (2000) A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev 42(2):267–293

    Article  MathSciNet  MATH  Google Scholar 

  45. Tarvydas P, Noreika A (2015) Usability evaluation of finite element method equation solvers. Elektronika ir Elektrotechnika 74(2):13–16

    Google Scholar 

  46. Simoncini V, Eldén L (2002) Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT Numer Math 42(1):159–182

    Article  MathSciNet  MATH  Google Scholar 

  47. Pan VY, Ivolgin D, Murphy B, Rosholt RE, Taj-Eddin I, Tang Y, Yan X (2008) Additive preconditioning and aggregation in matrix computations. Comput Math Appl 55(8):1870–1886

    Article  MathSciNet  MATH  Google Scholar 

  48. Pan VY, Yan X (2009) Additive preconditioning, eigenspaces, and the inverse iteration. Linear Algebra Appl 430(1):186–203

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JX gratefully acknowledges the financial supports from the National Science Foundations of China under Grants 11102154 and 11472217, Fundamental Research Funds for the Central Universities in China, and the Alexander von Humboldt Foundation (AvH) to support his research fellowship at the Chair of Structural Mechanics, University of Siegen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyou Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Zhou, H., Zhang, C. et al. Solving large-scale finite element nonlinear eigenvalue problems by resolvent sampling based Rayleigh-Ritz method. Comput Mech 59, 317–334 (2017). https://doi.org/10.1007/s00466-016-1353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1353-4

Keywords

Navigation