Skip to main content

Finite element modelling of internal and multiple localized cracks


Tracking algorithms constitute an efficient numerical technique for modelling fracture in quasi-brittle materials. They succeed in representing localized cracks in the numerical model without mesh-induced directional bias. Currently available tracking algorithms have an important limitation: cracking originates either from the boundary of the discretized domain or from predefined “crack-root” elements and then propagates along one orientation. This paper aims to circumvent this drawback by proposing a novel tracking algorithm that can simulate cracking starting at any point of the mesh and propagating along one or two orientations. This enhancement allows the simulation of structural case-studies experiencing multiple cracking. The proposed approach is validated through the simulation of a benchmark example and an experimentally tested structural frame under in-plane loading. Mesh-bias independency of the numerical solution, computational cost and predicted collapse mechanisms with and without the tracking algorithm are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Ngo D, Scordelis C (1967) Finite element analysis of reinforced concrete beams. ACI J 64(3):152–163

    Google Scholar 

  2. 2.

    Rashid Y (1968) Ultimate strength analysis of prestressed concrete pressure vessels. Nucl Eng Des 7:334–344

    Article  Google Scholar 

  3. 3.

    Mosler J, Meschke G (2004) Embedded crack versus smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias. Comput Methods Appl Mech Eng 193(30–32):3351–3375

    Article  MATH  Google Scholar 

  4. 4.

    Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    Article  MATH  Google Scholar 

  5. 5.

    Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192:4581–4607

    Article  MATH  Google Scholar 

  6. 6.

    Bažant ZP, Lin FB (1988) Nonlocal smeared cracking model for concrete fracture. J Struct Eng 114:2493–2510

    Article  Google Scholar 

  7. 7.

    de Vree J, Brekelmans W, van Gils M (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55:581–588

    Article  MATH  Google Scholar 

  8. 8.

    De Borst R (1991) Simulation of strain localization: a reppraisal of the cosserat continuum. Eng Comput 8:317–332

    Article  Google Scholar 

  9. 9.

    De Borst R, Sluys L, Mühlhaus H-B, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121

    Article  Google Scholar 

  10. 10.

    Benedetti L, Cervera M, Chiumenti M (2015) Stress-accurate mixed FEM for soil failure under shallow foundations involving strain localization in plasticity. Comput Geotech 64:32–47

    Article  Google Scholar 

  11. 11.

    Jirásek M, Zimmermann T (2001) Embedded crack model. Part II. Combination with smeared cracks. Int J Numer Methods Eng 50(6):1291–1305

    Article  MATH  Google Scholar 

  12. 12.

    Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50(12):2667–2682

    Article  MATH  Google Scholar 

  13. 13.

    Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833

    Article  Google Scholar 

  14. 14.

    Dumstorff P, Meschke G (2007) Crack propagation criteria in the framework of X-FEM-based structural analyses. Int J Numer Anal Methods Geomech 31:239–259

    Article  MATH  Google Scholar 

  15. 15.

    Cervera M, Chiumenti M (2006) Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput Methods Appl Mech Eng 196(1–3):304–320

    Article  MATH  Google Scholar 

  16. 16.

    Cervera M, Pelà L, Clemente R, Roca P (2010) A crack-tracking technique for localized damage in quasi-brittle materials. Eng Fract Mech 77(13):2431–2450

    Article  Google Scholar 

  17. 17.

    Slobbe A, Hendriks M, Rots J (2014) Smoothing the propagation of smeared cracks. Eng Fract Mech 132:147–168

    Article  Google Scholar 

  18. 18.

    Jirásek M, Grassl P (2008) Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng Fract Mech 75(8):1921–1943

    Article  Google Scholar 

  19. 19.

    De Borst R (2001) Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Eng Fract Mech 69:95–112

    Article  Google Scholar 

  20. 20.

    Rabczuk T (2012) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Appl Math 2013:1–61

    Article  Google Scholar 

  21. 21.

    Chen W-F (1982) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  22. 22.

    Chen W-F (1994) Constitutive equations for engineering materials, vol 2 plasticity and modelling. Elsevier, Amsterdam

    Google Scholar 

  23. 23.

    Feenstra PH, De Borst R (1996) A composite plasticity model for concrete. Int J Solids Struct 33:707–730

    Article  MATH  Google Scholar 

  24. 24.

    Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365

    Article  Google Scholar 

  25. 25.

    Cervera M, Oliver J, Faria R (1995) Seismic evaluation of concrete dams via continuum damage models. Earthq Eng Struct Dyn 24(9):1225–1245

    Article  Google Scholar 

  26. 26.

    Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  27. 27.

    Lee G, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Article  Google Scholar 

  28. 28.

    Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3–4):583–612

    Article  MATH  Google Scholar 

  29. 29.

    Papa E (1996) A unilateral damage model for masonry based on a homogenisation procedure. Mech Cohes Frict Mater 1(February):349–366

    Article  Google Scholar 

  30. 30.

    Lourenço PB (2000) Anisotropic softening model for masonry plates and shells. J Struct Eng 126(9):1008–1016

    Article  Google Scholar 

  31. 31.

    Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967

    Article  Google Scholar 

  32. 32.

    Lopez J, Oller S, Oñate E, Lubliner J (1999) A homogeneous constitutive model for masonry. Int J Numer Methods Eng 46(10):1651–1671

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  34. 34.

    Zucchini A, Louren PB (2002) A micro-mechanical model for the homogenisation of masonry. Int J Solids Struct 39:3233–3255

    Article  MATH  Google Scholar 

  35. 35.

    Lourenço PB, Milani G, Tralli A, Zucchini A (2007) Analysis of masonry structures: review of and recent trends in homogenization techniques. Can J Civ Eng 34(11):1443–1457

    Article  Google Scholar 

  36. 36.

    Calderini C, Lagomarsino S (2008) Continuum model for in-plane anisotropic inelastic behavior of masonry. J Struct Eng 134(2):209–220

    Article  Google Scholar 

  37. 37.

    Oliver J, Caicedo M, Roubin E, Huespe A, Hernández J (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427

    MathSciNet  Article  Google Scholar 

  38. 38.

    Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2015) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57:257–276

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Article  Google Scholar 

  40. 40.

    Macorini L, Izzuddin BA (2011) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Methods Eng 85:1584–1608

    Article  MATH  Google Scholar 

  41. 41.

    Oliveira S, Faria R (2006) Numerical simulation of collapse scenarios in reduced scale tests of arch dams. Eng Struct 28(10):1430–1439

    Article  Google Scholar 

  42. 42.

    Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17:299–325

    Article  MATH  Google Scholar 

  43. 43.

    Carvalho J, Ortega J, Lourenço PB, Ramos LF, Roman H (2014) Safety analysis of modern heritage masonry buildings: box-buildings in Recife, Brazil. Eng Struct 80:222–240

    Article  Google Scholar 

  44. 44.

    Mendes N, Lourenço PB (2014) Sensitivity analysis of the seismic performance of existing masonry buildings. Eng Struct 80:137–146

    Article  Google Scholar 

  45. 45.

    Jäger P, Steinmann P, Kuhl E (2008) On local tracking algorithms for the simulation of three-dimensional discontinuities. Comput Mech 42(3):395–406

    Article  MATH  Google Scholar 

  46. 46.

    Roth S-N, Léger P, Soulaïmani A (2015) A combined XFEM-damage mechanics approach for concrete crack propagation. Comput Methods Appl Mech Eng 283:923–955

    MathSciNet  Article  Google Scholar 

  47. 47.

    Zhang Y, Lackner R, Zeiml M, Mang HA (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Eng 287:335–366

    MathSciNet  Article  Google Scholar 

  48. 48.

    Saloustros S, Pelà L, Cervera M (2015) A crack-tracking technique for localized cohesive-frictional damage. Eng Fract Mech 150:96–114

    Article  Google Scholar 

  49. 49.

    Pelà L, Cervera M, Oller S, Chiumenti M (2014) A localized mapped damage model for orthotropic materials. Eng Fract Mech 124–125:196–216

    Article  Google Scholar 

  50. 50.

    Linder C, Raina A (2013) A strong discontinuity approach on multiple levels to model solids at failure. Comput Methods Appl Mech Eng 253:558–583

    Article  MATH  Google Scholar 

  51. 51.

    Motamedi MH, Weed DA, Foster CD (2016) Numerical simulation of mixed mode (I and II) fracture behavior of pre-cracked rock using the strong discontinuity approach. Int J Solids Struct 85–86:44–56

    Article  Google Scholar 

  52. 52.

    Li J-B, Fu X-A, Chen B-B, Wu C, Lin G (2016) Modeling crack propagation with the extended scaled boundary finite element method based on the level set method. Comput Struct 167:50–68

    Article  Google Scholar 

  53. 53.

    Wu JY, Li FB, Xu SL (2015) Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids. Comput Methods Appl Mech Eng 285:346–378

    MathSciNet  Article  Google Scholar 

  54. 54.

    Feld-Payet S, Chiaruttini V, Besson J, Feyel F (2015) A new marching ridges algorithm for crack path tracking in regularized media. Int J Solids Struct 71:57–69

    Article  Google Scholar 

  55. 55.

    Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36–37):6427–6454

    Article  MATH  Google Scholar 

  56. 56.

    Pelà L, Cervera M, Roca P (2011) Continuum damage model for orthotropic materials: application to masonry. Comput Methods Appl Mech Eng 200:917–930

    MathSciNet  Article  MATH  Google Scholar 

  57. 57.

    Voyiadjis GZ, Taqieddin ZN, Kattan PI (2009) Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept. Int J Damage Mech 18(7):603–638

    Article  Google Scholar 

  58. 58.

    Mazars J, Hamon F, Grange S (2014) A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater Struct 48:3779–3793

    Article  Google Scholar 

  59. 59.

    He W, Wu YF, Xu Y, Fu TT (2015) A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects. Comput Methods Appl Mech Eng 297:371–391

    MathSciNet  Article  Google Scholar 

  60. 60.

    Pereira LF, Weerheijm J, Sluys LJ (2016) A new rate-dependent stress-based nonlocal damage model to simulate dynamic tensile failure of quasi-brittle materials. Int J Impact Eng 94:83–95

    Article  Google Scholar 

  61. 61.

    Lemaitre J, Chaboche JL (1978) Aspect phenomenologique de la rupture par endommagement. J Mec Appl 2(3):317–365

    Google Scholar 

  62. 62.

    Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models-I. Formulation. Int J Solids Struct 23(7):821–840

    Article  MATH  Google Scholar 

  63. 63.

    Oliver J, Cervera M, Oller Martinez SH, Lubliner J (1990) Isotropic damage models and smeared crack analysis of concrete. In: Proceedings SCI-C computer aided analysis and design of concrete structures, Feb, pp 945–957

  64. 64.

    Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  65. 65.

    Cervera M (2003) Viscoelasticity and rate-dependent continuum damage models, monography N-79, technical report, Barcelona

  66. 66.

    Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28(2):461–474

    Article  MATH  Google Scholar 

  67. 67.

    Wu J-Y, Cervera M (2015) On the equivalence between traction- and stress-based approaches for the modeling of localized failure in solids. J Mech Phys Solids 82:137–163

    MathSciNet  Article  Google Scholar 

  68. 68.

    Cervera M, Wu J-Y (2015) On the conformity of strong, regularized, embedded and smeared discontinuity approaches for the modeling of localized failure in solids. Int J Solids Struct 71:19–38

    Article  Google Scholar 

  69. 69.

    ASTM:C496/C496M (2011) Standard test method for splitting tensile strength of cylindrical concrete specimens, vol 336. ASTM International, West Conshohocken, PA, pp 1–5

  70. 70.

    ASTM:D3967-08 (2008) Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken, PA

  71. 71.

    COMET (2013) Coupled mechanical and thermal analysis.

  72. 72.

    GiD (2014) The personal pre and post-processor.

  73. 73.

    EN (Eurocode 2) (1992) Design of concrete structures. Technical report, London

  74. 74.

    Augenti N, Parisi F, Prota A, Manfredi G (2011) In-plane lateral response of a full-scale masonry subassemblage with and without an inorganic matrix-grid strengthening system. J Compos Constr 15(4):578–590

    Article  Google Scholar 

  75. 75.

    Parisi F, Lignola GP, Augenti N, Prota A, Manfredi G (2011) Nonlinear behavior of a masonry subassemblage before and after strengthening with inorganic matrix-grid composites. J Compos Constr 15(5):821–832

    Article  Google Scholar 

  76. 76.

    EN 1998-1 (Eurocode 8) (2003) Design of structures for earthquake resistance, part 1 general rules seismic actions and rules for buildings

  77. 77.

    Fajfar P (1999) Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct Dyn 28:979–993

    Article  Google Scholar 

Download references


This research has received the financial support from the MINECO (Ministerio de Economia y Competitividad of the Spanish Government) and the ERDF (European Regional Development Fund) through the the MULTIMAS project (Multiscale techniques for the experimental and numerical analysis of the reliability of masonry structures, ref. num. BIA2015-63882-P) and the EACY project (Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. MAT 2013-48624-C2-1-P). The authors gratefully acknowledge Dr. Fulvio Parisi for providing information regarding the experimental data.

Author information



Corresponding author

Correspondence to Savvas Saloustros.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saloustros, S., Pelà, L., Cervera, M. et al. Finite element modelling of internal and multiple localized cracks. Comput Mech 59, 299–316 (2017).

Download citation


  • Continuum damage mechanics
  • Crack-tracking
  • Damage localization
  • Quasi-brittle materials
  • Shear/flexural/tensile cracks