Skip to main content

Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

Abstract

Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material engineering principle for discovering and manufacturing new composites with transformative impact on aerospace, automobile, petrochemical industries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nano-composites: theory, experiments and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  Google Scholar 

  3. Ramanathan T, Liu H, Brinson LC (2005) Functionalized swnt/polymer nanocomposites for dramatic property improvement. J Polym Sci B 43(17):2269–2279

    Article  Google Scholar 

  4. Li Y, Kröger M, Liu WK (2012) Nanoparticle effect on the dynamics of polymer chains and their entanglement network. Phys Rev Lett 109(11):118001

    Article  Google Scholar 

  5. Li Y, Kröger M, Liu WK (2012) Nanoparticle geometrical effect on structure, dynamics and anisotropic viscosity of polyethylene nanocomposites. Macromolecules 45(4):2099–2112

    Article  Google Scholar 

  6. Li Y, Kröger M, Liu WK (2014) Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter 10(11):1723–1737

    Article  Google Scholar 

  7. Moore JA, Li Y, O’Connor DT, Stroberg W, Liu Wing Kam (2015) Advancements in multiresolution analysis. Int J Numer Methods Eng 102(3–4):784–807

    MathSciNet  MATH  Article  Google Scholar 

  8. Greene MS, Li Y, Chen W, Liu WK (2014) The archetype-genome exemplar in molecular dynamics and continuum mechanics. Comp Mech 53(4):687–737

    MathSciNet  MATH  Article  Google Scholar 

  9. Wang MJ (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71(3):520–589

    Article  Google Scholar 

  10. Kahn Ribeiro S, Kobayashi S, Beuthe M, Gasca J, Greene D, Lee DS, Muromachi Y, Newton PJ, Plotkin S, Sperling D, Wit R, Zhou PJ (2007) Transport and its infrastructure. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

  11. Pearce JM, Hanlon JT (2007) Energy conservation from systematic tire pressure regulation. Energy Policy 35(4):2673–2677

    Article  Google Scholar 

  12. Einstein A (1956) Investigations on the theory of the Brownian movement. Courier Corporation. Dover Publications Inc., New York

  13. Smallwood HM (1944) Limiting law of the reinforcement of rubber. J Appl Phys 15(11):758–766

    Article  Google Scholar 

  14. Ahmed SaFRJ, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25(12):4933–4942

    Article  Google Scholar 

  15. Shao-Yun F, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B 39(6):933–961

    Article  Google Scholar 

  16. Bigg DM (1987) Mechanical properties of particulate filled polymers. Polymer Composites 8(2):115–122

    Article  Google Scholar 

  17. Li S, Sauer RA, Wang G (2007) The eshelby tensors in a finite spherical domain part i: theoretical formulations. J Appl Mech 74(4):770–783

    MathSciNet  Article  Google Scholar 

  18. Li S, Wang G, Sauer RA (2007) The eshelby tensors in a finite spherical domain part ii: applications to homogenization. J Appl Mech 74(4):784–797

    MathSciNet  Article  Google Scholar 

  19. Shi C, Qingsong T, Fan H, Rios CAO, Li S (2016) Interphase models for nanoparticle-polymer composites. J Nanomech Micromech 6(2):04016003

    Article  Google Scholar 

  20. Dickie RA (1973) Heterogeneous polymer-polymer composites. i. theory of viscoelastic properties and equivalent mechanical models. J Appl Polym Sci 17(1):45–63

    Article  Google Scholar 

  21. Finegan IC, Gibson RF (1999) Recent research on enhancement of damping in polymer composites. Compos Struct 44(2):89–98

    Article  Google Scholar 

  22. Li K, Gao X-L, Roy AK (2006) Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech Adv Mater Struct 13(4):317–328

    Article  Google Scholar 

  23. Fisher FT, Brinson LC (2001) Viscoelastic interphases in polymer-matrix composites: theoretical models and finite-element analysis. Compos Sci Technol 61(5):731–748

    Article  Google Scholar 

  24. Bergström JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33(9):523–530

    Article  Google Scholar 

  25. Bergström JS, Boyce MC (2000) Large strain time-dependent behavior of filled elastomers. Mech Mater 32(11):627–644

    Article  Google Scholar 

  26. Bergstrom JS, Boyce MC (1999) Mechanical behavior of particle filled elastomers. Rubb Chem Technol 72(4):633–656

    Article  Google Scholar 

  27. O’Keeffe SC, Tang S, Kopacz AM, Smith J, Rowenhorst DJ, Spanos G, Liu WK, Olson GB (2015) Multiscale ductile fracture integrating tomographic characterization and 3-d simulation. Acta Mater 82:503–510

    Article  Google Scholar 

  28. Tang S, Kopacz AM, Chan S, Olson GB, Liu WK et al (2013) Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography. J Mech Phys Solids 61(11):2108–2124

    Article  Google Scholar 

  29. Tang S, Kopacz AM, O’Keeffe SC, Olson GB, Liu WK (2013) Concurrent multiresolution finite element: formulation and algorithmic aspects. Comput Mech 52(6):1265–1279

    MathSciNet  MATH  Article  Google Scholar 

  30. Hua Deng Y, Liu DG, Dikin DA, Putz KW, Wei Chen L, Brinson C, Burkhart C, Poldneff M, Jiang B et al (2012) Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Compos Sci Technol 72(14):1725–1732

    Article  Google Scholar 

  31. Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, Morkowchuk L, Li Y, Deng H, Xu H (2013) Stalking the materials genome: A data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 23(46):5746–5752

    Article  Google Scholar 

  32. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comp Aided Des 45(1):65–76

  33. Hongyi X, Li Y, Brinson C, Chen W (2014) A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 136(5):051007

    Article  Google Scholar 

  34. Hongyi X, Liu R, Choudhary A, Chen W (2015) A machine learning-based design representation method for designing heterogeneous microstructures. J Mech Des 137(5):051403

    Article  Google Scholar 

  35. Papon A, Saalwächter K, Schaler K, Guy L, Lequeux F, Montes H (2011) Low-field nmr investigations of nanocomposites: polymer dynamics and network effects. Macromolecules 44(4):913–922

    Article  Google Scholar 

  36. Papon A, Montes H, Hanafi M, Lequeux F, Guy L, Saalwächter K (2012) Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys Rev Lett 108(6):065702

    Article  Google Scholar 

  37. Starr FW, Schrøder TB, Glotzer SC (2001) Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Phys Rev E 64(2):021802

    Article  Google Scholar 

  38. Starr FW, Schrøder TB, Glotzer SC (2002) Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35(11):4481–4492

    Article  Google Scholar 

  39. Margarita Krutyeva A, Wischnewski MM, Willner L, Maiz J, Mijangos Carmen, Arantxa Arbe J, Colmenero AR, Holderer O et al (2013) Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys Rev Lett 110(10):108303

    Article  Google Scholar 

  40. Glomann T, Schneider GJ, Allgaier J, Radulescu A, Lohstroh W, Farago B, Richter D (2013) Microscopic dynamics of polyethylene glycol chains interacting with silica nanoparticles. Phys Rev Lett 110(17):178001

    Article  Google Scholar 

  41. Wood CD, Ajdari A, Burkhart CW, Putz KW, Brinson LC (2016) Understanding competing mechanisms for glass transition changes in filled elastomers. Compos Sci Technol 127:88–94

    Article  Google Scholar 

  42. Liu H, Brinson LC (2006) A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites. J Appl Mech 73(5):758–768

    MATH  Article  Google Scholar 

  43. Liu Z, Moore JA, Aldousari SM, Hedia HS, Asiri SA, Liu WK (2015) A statistical descriptor based volume-integral micromechanics model of heterogeneous material with arbitrary inclusion shape. Comput Mech 55(5):963–981

    MathSciNet  MATH  Article  Google Scholar 

  44. Moore JA, Ma R, Domel AG, Liu WK (2014) An efficient multiscale model of damping properties for filled elastomers with complex microstructures. Compos B 62:262–270

    Article  Google Scholar 

  45. Song Y, Zheng Q (2011) Application of two phase model to linear dynamic rheology of filled polymer melts. Polymer 52(26):6173–6179

    Article  Google Scholar 

  46. Simmons DS (2016) An emerging unified view of dynamic interphases in polymers. Macromol Chem Phys 217(2):137–148

    Article  Google Scholar 

  47. Materials genome initiative. https://www.whitehouse.gov/mgi. Accessed 2 Mar 2016

  48. Li Y, Kröger M, Liu WK (2011) Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer 52(25):5867–5878

    Article  Google Scholar 

  49. Li Y, Tang S, Abberton BC, Kröger M, Burkhart C, Jiang B, Papakonstantopoulos GJ, Poldneff M, Liu WK (2012) A predictive multiscale computational framework for viscoelastic properties of linear polymers. Polymer 53(25):5935–5952

    Article  Google Scholar 

  50. Li Y, Abberton BC, Kröger M, Liu WK (2013) Challenges in multiscale modeling of polymer dynamics. Polymers 5(2):751–832

    Article  Google Scholar 

  51. Li Y, Tang S, Kröger M, Liu WK (2016) Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. J Mech Phys Solids 88:204–226

    MathSciNet  Article  Google Scholar 

  52. Schneider GJ, Nusser K, Willner L, Falus P, Richter D (2011) Dynamics of entangled chains in polymer nanocomposites. Macromolecules 44(15):5857–5860

    Article  Google Scholar 

  53. Schneider GJ, Nusser K, Neueder S, Brodeck M, Willner L, Farago B, Holderer O, Briels WJ, Richter D (2013) Anomalous chain diffusion in unentangled model polymer nanocomposites. Soft Matter 9(16):4336–4348

    Article  Google Scholar 

  54. Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis. Comp Methods Appl Mech Eng 306:319–341

    Article  Google Scholar 

  55. Hausler K, Sayir MB (1995) Nonlinear viscoelastic response of carbon black reinforced rubber derived from moderately large deformations in torsion. J Mech Phys Solids 43(2):295–318

    Article  Google Scholar 

  56. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  57. Tang S, Greene MS, Liu WK (2012) Two-scale mechanism-based theory of nonlinear viscoelasticity. J Mech Phys Solids 60(2):199–226

    MathSciNet  MATH  Article  Google Scholar 

  58. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592

    MATH  Article  Google Scholar 

  59. Rivlin RS (1948) Large elastic deformations of isotropic materials. iv. further developments of the general theory. Philos Trans R Soc Lond A 241(835):379–397

    MathSciNet  MATH  Article  Google Scholar 

  60. Ogden RW (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326:565–584

    MATH  Article  Google Scholar 

  61. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771

    Article  Google Scholar 

  62. Gent AN (1996) A new constitutive relation for rubber. Rubb Chem Technol 69(1):59–61

    MathSciNet  Article  Google Scholar 

  63. Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubb Chem Technol 79(5):835–858

    Article  Google Scholar 

  64. Treloar LRG (1943) The elasticity of a network of long-chain moleculesii. Trans Faraday Soc 39:241–246

    Article  Google Scholar 

  65. Kuhn W, Grün F (1942) Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Zeitschrift 101(3):248–271

    Article  Google Scholar 

  66. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412

    Article  Google Scholar 

  67. Edwards SF, Vilgis Th (1986) The effect of entanglements in rubber elasticity. Polymer 27(4):483–492

    Article  Google Scholar 

  68. Kaliske M, Heinrich G (1999) An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubb ChemTechnol 72(4):602–632

    Article  Google Scholar 

  69. Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660

    MathSciNet  MATH  Article  Google Scholar 

  70. Davidson JD, Goulbourne NC (2013) A nonaffine network model for elastomers undergoing finite deformations. J Mech Phys Solids 61(8):1784–1797

    Article  Google Scholar 

  71. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comp Methods Appl Mech Eng 60(2):153–173

    MATH  Article  Google Scholar 

  72. Govindjee S, Simo JC (1992) Mullins effect and the strain amplitude dependence of the storage modulus. Int J Solids Struct 29(14):1737–1751

    MATH  Article  Google Scholar 

  73. Lion A (1996) A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech Thermodyn 8(3):153–169

    Article  Google Scholar 

  74. Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99

    Article  Google Scholar 

  75. Keck J, Miehe C (1997) An eulerian overstress-type viscoplastic constitutive model in spectral form formulation and numerical implementation. Comput Plast 1:997–1003

    Google Scholar 

  76. Le Tallec P, Rahier C, Kaiss A (1993) Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comp Methods Appl Mech Eng 109(3–4):233–258

    MathSciNet  MATH  Article  Google Scholar 

  77. Govindjee S, Reese S (1997) A presentation and comparison of two large deformation viscoelasticity models. J Eng Mater Technol 119(3):251–255

    Article  Google Scholar 

  78. Bergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954

    MATH  Article  Google Scholar 

  79. Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10):2231–2258

    MathSciNet  MATH  Article  Google Scholar 

  80. Doi M, Edwards SF (1986) The theory of polymer dynamics, international series of monographs on physics. Clarendon Press, Oxford

    Google Scholar 

  81. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2(10):695–700

    Article  Google Scholar 

  82. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278–282

    Article  Google Scholar 

  83. Cheng X, Putz KW, Wood CD, Brinson LC (2014) Characterization of local elastic modulus in confined polymer films via afm indentation. Macromol Rapid Commun 36:391–397

    Article  Google Scholar 

  84. Cheng X, Putz KW, Wood CD, Brinson LC (2015) Characterization of local elastic modulus in confined polymer films via afm indentation. Macromol Rapid Commun 36(4):391–397

    Article  Google Scholar 

  85. Watcharotone S, Wood CD, Friedrich R, Chen X, Qiao Rui, Putz Karl, Brinson L Catherine (2011) Interfacial and substrate effects on local elastic properties of polymers using coupled experiments and modeling of nanoindentation. Adv Eng Mater 13(5):400–404

    Article  Google Scholar 

  86. Natarajan B, Li Y, Deng H, Brinson LC, Schadler Linda S (2013) Effect of interfacial energetics on dispersion and glass transition temperature in polymer nanocomposites. Macromolecules 46(7):2833–2841

    Article  Google Scholar 

  87. Ash BJ, Siegel RW, Schadler LS (2004) Glass-transition temperature behavior of alumina/pmma nanocomposites. J Polym Sci B 42(23):4371–4383

    Article  Google Scholar 

  88. Roth CB, McNerny KL, Jager WF, Torkelson JM (2007) Eliminating the enhanced mobility at the free surface of polystyrene: fluorescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules 40(7):2568–2574

    Article  Google Scholar 

  89. Rouse PE Jr (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280

    Article  Google Scholar 

  90. De Gennes P-G (1979) Scaling concepts polymer physics. Cornell University Press, New York

    Google Scholar 

  91. McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51(6):1379–1527

    Article  Google Scholar 

  92. Kalathi JT, Grest GS, Kumar SK (2012) Universal viscosity behavior of polymer nanocomposites. Phys Rev Lett 109(19):198301

    Article  Google Scholar 

  93. Kalathi JT, Kumar SK, Rubinstein M, Grest GS (2015) Rouse mode analysis of chain relaxation in polymer nanocomposites. Soft Matter 11(20):4123–4132

    Article  Google Scholar 

  94. Yamamoto U, Schweizer KS (2013) Theory of entanglements and tube confinement in rod-sphere nanocomposites. ACS Macro Lett 2(11):955–959

    Article  Google Scholar 

  95. Yamamoto U, Schweizer KS (2013) Spatially dependent relative diffusion of nanoparticles in polymer melts. J Chem Phys 139(6):064907

    Article  Google Scholar 

  96. Nusser K, Schneider GJ, Richter D (2013) Rheology and anomalous flow properties of poly (ethylene-alt-propylene)-silica nanocomposites. Macromolecules 46(15):6263–6272

    Article  Google Scholar 

  97. Abberton BC, Liu WK, Keten S (2015) Anisotropy of shear relaxation in confined thin films of unentangled polymer melts. Macromolecules 48(20):7631–7639

    Article  Google Scholar 

  98. Yeong CLY, Torquato S (1998) Reconstructing random media. ii. three-dimensional media from two-dimensional cuts. Phys Rev E 58(1):224

    MathSciNet  Article  Google Scholar 

  99. Torquato S (2013) Random heterogeneous materials: microstructure and macroscopic properties, vol 16. Springer, Berlin

    MATH  Google Scholar 

  100. Sundararaghavan V, Zabaras N (2005) Classification and reconstruction of three-dimensional microstructures using support vector machines. Comput Mater Sci 32(2):223–239

    Article  Google Scholar 

  101. Jean A, Jeulin D, Forest S, Cantournet S, Nguyen Franck (2011) A multiscale microstructure model of carbon black distribution in rubber. J Microsc 241(3):243–260

    Article  Google Scholar 

  102. Laiarinandrasana L, Jean A, Jeulin D, Forest S (2012) Modelling the effects of various contents of fillers on the relaxation rate of elastomers. Mater Des 33:75–82

    Article  Google Scholar 

  103. Karasek L, Sumita M (1996) Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. J Mater Sci 31(2):281–289

    Article  Google Scholar 

  104. Chen L, Zhou W, Jie L, Li J, Zhang W, Huang N, Lihui W, Li L (2015) Unveiling reinforcement and toughening mechanism of filler network in natural rubber with synchrotron radiation x-ray nano-computed tomography. Macromolecules 48(21):7923–7928

    Article  Google Scholar 

  105. Egerton RF, Li P, Malac M (2004) Radiation damage in the tem and sem. Micron 35(6):399–409

    Article  Google Scholar 

  106. Saheli G, Garmestani H, Adams BL (2004) Microstructure design of a two phase composite using two-point correlation functions. J Comp Aided Mater Des 11(2–3):103–115

    Article  Google Scholar 

  107. Roberts AP (1997) Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys Rev E 56(3):3203

    Article  Google Scholar 

  108. Basanta D, Miodownik MA, Holm EA, Bentley PJ (2005) Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs. Metallurgical Mater Trans A 36(7):1643–1652

    Article  Google Scholar 

  109. Bostanabad R, Bui AT, Xie W, Apley DW, Chen W (2016) Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater 103:89–102

    Article  Google Scholar 

  110. Feyel F, Chaboche JL (2000) Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comp Methods Appl Mech Eng 183(3):309–330

    MATH  Article  Google Scholar 

  111. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  112. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comp Methods Appl Mech Eng 157(12):69–94

    MathSciNet  MATH  Article  Google Scholar 

  113. Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):491–499

    Article  Google Scholar 

  114. Peng RD, Zhou HW, Wang HW, Mishnaevsky L (2012) Modeling of nano-reinforced polymer composites. Comput Mater Sci 60:19–31

    Article  Google Scholar 

  115. Yin X, Chen W, To A, McVeigh C, Liu WK (2008) Statistical volume element method for predicting microstructure-constitutive property relations. Comp Methods Appl Mech Eng 197(43):3516–3529

    MathSciNet  MATH  Article  Google Scholar 

  116. Brinson HF, Brinson LC (2007) Polymer engineering science and viscoelasticity: an introduction. Springer, New York

    MATH  Google Scholar 

  117. Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29(1):143–150

    MathSciNet  MATH  Article  Google Scholar 

  118. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    MathSciNet  MATH  Article  Google Scholar 

  119. Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44(2):37–76

    MathSciNet  Article  Google Scholar 

  120. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    MathSciNet  MATH  Article  Google Scholar 

  121. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5):571–574

    Article  Google Scholar 

  122. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    MathSciNet  Article  Google Scholar 

  123. Liu H, Brinson L Catherine (2008) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512

    Article  Google Scholar 

  124. Diani J, Gilormini P, Merckel Y, Vion-Loisel F (2013) Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers: The role of the filler-rubber interphase. Mech Mater 59:65–72

    Article  Google Scholar 

  125. Liu Z, Moore JA, Liu WK (2016) An extended micromechanics method for probing interphase properties in polymer nanocomposites. J Mech Phys Solids 95:663–680

  126. Chen L, Chen GH, Lu L (2007) Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv Func Mater 17(6):898–904

    Article  Google Scholar 

  127. Xiao X, Xie T, Cheng YT (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  Google Scholar 

  128. Yang S, Wang J, Tan H, Zeng F, Liu C (2012) Mechanically robust pegda-msns-oh nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering. Soft Matter 8(34):8981–8989

    Article  Google Scholar 

  129. Moghadam MN, Kolesov V, Vogel A, Klok HA, Pioletti DP (2014) Controlled release from a mechanically-stimulated thermosensitive self-heating composite hydrogel. Biomaterials 35(1):450–455

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No.(7-135-1434 HiCi). This research was supported in part through the computational resources and staff contributions provided for the Booth Engineering Center for Advanced Technology (BECAT) at University of Connecticut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Z., Jia, Z. et al. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Comput Mech 59, 187–201 (2017). https://doi.org/10.1007/s00466-016-1346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1346-3

Keywords

  • Polymer nanocomposites
  • Multiscale modeling
  • Viscoelasticity
  • Material design
  • Finite element analysis
  • Molecular dynamics