Skip to main content
Log in

Non-coherent energetic interfaces accounting for degradation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Within the continuum mechanics framework, there are two main approaches to model interfaces: classical cohesive zone modeling (CZM) and interface elasticity theory. The classical CZM deals with geometrically non-coherent interfaces for which the constitutive relation is expressed in terms of traction–separation laws. However, CZM lacks any response related to the stretch of the mid-plane of the interface. This issue becomes problematic particularly at small scales with increasing interface area to bulk volume ratios, where interface elasticity is no longer negligible. The interface elasticity theory, in contrast to CZM, deals with coherent interfaces that are endowed with their own energetic structures, and thus is capable of capturing elastic resistance to tangential stretch. Nonetheless, the interface elasticity theory suffers from the lack of inelastic material response, regardless of the strain level. The objective of this contribution therefore is to introduce a generalized mechanical interface model that couples both the elastic response along the interface and the cohesive response across the interface whereby interface degradation is taken into account. The material degradation of the interface mid-plane is captured by a non-local damage model of integral-type. The out-of-plane decohesion is described by a classical cohesive zone model. These models are then coupled through their corresponding damage variables. The non-linear governing equations and the weak forms thereof are derived. The numerical implementation is carried out using the finite element method and consistent tangents are derived. Finally, a series of numerical examples is studied to provide further insight into the problem and to carefully elucidate key features of the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An interface can be regarded as a two-sided surface, therefore the terms “surface” and “interface” are sometimes used interchangeably.

  2. Recall that the coherence condition on the interface implies the continuity of the displacement across the interface and thus the displacement jump vanishes identically.

  3. Also note the differences between the units of interface stress and traction that are N/mm and N/mm\(^2\), respectively. The unit of length in this work is mm.

  4. The term “mid-plane” is only valid in the case of non-coherency on the interface.

  5. Note that the term “out-of-plane” refers to cohesive properties of the interface since these properties are functions of the relative displacement of the two sides of the interface with respect to each other and not the deformation of the interface mid-plane. Therefore shear opening and shear degradation are also labeled out-of-plane.

  6. The superficiality of the interface Piola stress tensor is a classical assumption of interface elasticity theory. Recently, [47] have proven that this condition is the consequence of a first-order continuum theory.

  7. The integral term in Eq. (3) is introduced in analogy to that of [81, Sect.  1.3.3] and denotes the energy storage in the material due to the accumulation of microscopic defects.

  8. The geodesics are the general form of straight lines when applied to curved, three-dimensional interfaces. The minimal geodesics in differential geometry are the shortest distance paths between two points on a interface.

  9. Since in the current cohesive zone model the traction vector is co-linear with the displacement jump vector, the balance of angular momentum on the interface is fulfilled. See [67] for further details.

  10. In what follows, for the sake of brevity, homogeneous Neumann boundary conditions are assumed and the body forces are omitted and hence, some integrals vanish. The integrals are standard and require no additional care for a generalized interface.

References

  1. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Meth Eng 50:1701–1736

    Article  MATH  Google Scholar 

  2. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Meth Eng 68(5):542–582

    Article  MathSciNet  MATH  Google Scholar 

  3. Allix O, Corigliano A (1996) Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. lnt J Fract 77(2):111–140

    Article  Google Scholar 

  4. Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36(15):2189–2216

    Article  MATH  Google Scholar 

  5. Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos. Struct. 31(1):61–74

    Article  Google Scholar 

  6. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129

    Article  MathSciNet  Google Scholar 

  7. Benveniste Y (2006) A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids 54(4):708–734

    Article  MathSciNet  MATH  Google Scholar 

  8. Benveniste Y (2013) Models of thin interphases and the effective medium approximation in composite media with curvilinearly anisotropic coated inclusions. Int J Eng Sci 72:140–154

    Article  Google Scholar 

  9. Benveniste Y, Miloh T (2001) Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech Mater 33(6):309–323

    Article  Google Scholar 

  10. Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140(3–4):329–359

    Article  MATH  Google Scholar 

  11. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(2):2899–2938

    Article  MATH  Google Scholar 

  12. Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237(2):180–184

    Article  Google Scholar 

  13. Catlin A, Walker WP (1960) Mechanical properties of thin single-crystal gold films. J Appl Phys 31(12):2135–2139

    Article  Google Scholar 

  14. Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a nonlocal damage model. Int J Solids Struct 46(6):1476–1490

    Article  MATH  Google Scholar 

  15. Cervenka J, Saouma VE (1995) Discrete crack modeling in concrete structures. In: Wittmann FH (eds) Fracture mechanics of concrete structures, proceedings FRAMCOS-2

  16. Chaboche JL, Girard R, Schaff A (1997) Numerical analysis of composite systems by using interphase/interface models. Comput Mech 20:3–11

    Article  MATH  Google Scholar 

  17. Chatzigeorgiou G, Javili A, Steinmann P (2013) Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale. Math Mech Solids 20(9):1130–1145

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen J, Crisfield M, Kinloch AJ, Busso EP, Matthews FL, Qiu Y (1999) Predicting progressive delamination of composite material specimens via interface elements. Mech Compos Mater Struct 6(4):301–317

    Article  Google Scholar 

  19. Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811

    Article  MATH  Google Scholar 

  20. Daher N, Maugin GA (1986) The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces. Acta Mech 60(3–4):217–240

    Article  MathSciNet  MATH  Google Scholar 

  21. Davydov D, Javili A, Steinmann P (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput Mater Sci 69:510–519

    Article  Google Scholar 

  22. dell’Isola F, Romano A (1987) On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int J Eng Sci 25:1459–1468

    Article  MathSciNet  MATH  Google Scholar 

  23. Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53(8):1827–1854

    Article  MathSciNet  MATH  Google Scholar 

  24. Duan HL, Karihaloo BL (2007) Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions. Phys Rev B 75(6):064206

    Article  Google Scholar 

  25. Duan HL, Wang J, Huang ZP, Karihaloo BL (2005a) Eshelby formalism for nano-inhomogeneities. Proc R Soc A 461(2062):3335–3353

    Article  MathSciNet  MATH  Google Scholar 

  26. Duan HL, Wang J, Huang ZP, Karihaloo BL (2005b) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53(7):1574–1596

    Article  MathSciNet  MATH  Google Scholar 

  27. Duan HL, Wang J, Karihaloo BL (2009) Theory of elasticity at the nanoscale. Adv Appl Mech 42:1–68

    Article  Google Scholar 

  28. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  29. Esmaeili A, Javili A, Steinmann P (2016a) Highly-conductive energetic coherent interfaces subject to in-plane degradation. Math Mech Solids. doi:10.1177/1081286516642818

  30. Esmaeili A, Javili A, Steinmann P (2016b) A thermo-mechanical cohesive zone model accounting for mechanically energetic Kapitza interfaces. Int J Solids Struct 92–93:29–44

    Article  Google Scholar 

  31. Fagerström M, Larsson R (2005) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948

    Article  MathSciNet  MATH  Google Scholar 

  32. Fagerström M, Larsson R (2008) A thermo-mechanical cohesive zone formulation for ductile fracture. J Mech Phys Solids 56(10):3037–3058

    Article  MathSciNet  MATH  Google Scholar 

  33. Fartash A, Fullerton EE, Schuller IK, Bobbin SE, Wagner JW, Cammarata RC, Kumar S, Grimsditch M (1991) Evidence for the supermodulus effect and enhanced hardness in metallic superlattices. Phys Rev B 44:13760–13763

    Article  Google Scholar 

  34. Fischer FD, Svoboda J (2010) Stresses in hollow nanoparticles. Int J Solids Struct 47(20):2799–2805

    Article  MATH  Google Scholar 

  35. Fleischhauer R, Behnke R, Kaliske M (2013) A thermomechanical interface element formulation for finite deformations. Comput Mech 52(5):1039–1058

    Article  MathSciNet  MATH  Google Scholar 

  36. Fried E, Todres R (2005) Mind the gap: the shape of the free surface of a rubber-like material in proximity to a rigid contactor. J Elast 80(1–3):97–151

    Article  MathSciNet  MATH  Google Scholar 

  37. Gasser TC, Holzapfel GA (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Methods Appl Mech Eng 192(47–48):5059–5098

    Article  MathSciNet  MATH  Google Scholar 

  38. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MathSciNet  MATH  Google Scholar 

  39. Gurtin ME, Weissmüller J, Larché F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 78(5):1093–1109

    Article  Google Scholar 

  40. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  41. Huang ZP, Sun L (2007) Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech 190(1–4):151–163

    Article  MATH  Google Scholar 

  42. Ijaz H, Asad M, Gornet L, Alam SY (2014) Prediction of delamination crack growth in carbon/fiber epoxy composite laminates using non-local interface damage model. Mech Ind 15(4):293–300

    Article  Google Scholar 

  43. Javili A, Steinmann P (2009) A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comput Methods Appl Mech Eng 198(27–29):2198–2208

    Article  MATH  Google Scholar 

  44. Javili A, Steinmann P (2010a) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199(9–12):755–765

    Article  MathSciNet  MATH  Google Scholar 

  45. Javili A, Steinmann P (2010b) On thermomechanical solids with boundary structures. Int J Solids Struct 47(24):3245–3253

    Article  MATH  Google Scholar 

  46. Javili A, McBride A, Steinmann P (2012) Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Comput Mater Sci 65:542–551

    Article  Google Scholar 

  47. Javili A, dell’Isola F, Steinmann P (2013a) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401

    Article  MathSciNet  MATH  Google Scholar 

  48. Javili A, McBride A, Steinmann P (2013b) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Appl Mech Rev 65(1):010802

    Article  Google Scholar 

  49. Javili A, McBride A, Steinmann P (2013c) Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. Int J Numer Meth Eng 93(5):551–574

    Article  MathSciNet  MATH  Google Scholar 

  50. Javili A, Kaessmair S, Steinmann P (2014a) General imperfect interfaces. Comput Methods Appl Mech Eng 275:76–97

    Article  MathSciNet  MATH  Google Scholar 

  51. Javili A, McBride A, Steinmann P, Reddy BD (2014b) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54(3):745–762

    Article  MathSciNet  MATH  Google Scholar 

  52. Jirásek M, Belytschko T (2002) Computational resolution of strong discontinuities. In: Proceedings of fifth world congress on computational mechanics, WCCM V, Vienna University of Technology, Austria

  53. Ladevèze P, Allix O, Gornet L, Lévêque D, Perret L (1998) A computational damage mechanics approach for laminates: identification and comparison with experimental results. Stud Appl Mech 46:481–500

    Article  Google Scholar 

  54. Levitas VI, Javanbakht M (2010) Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys Rev Lett 105(16):165701

    Article  Google Scholar 

  55. Lin G, Geubelle PH, Sottos NR (2001) Simulation of fiber debonding with friction in a model composite pushout test. Int J Solids Struct 38(46–47):8547–8562

    Article  MATH  Google Scholar 

  56. Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195:5037–5052

    Article  MathSciNet  MATH  Google Scholar 

  57. Mi Y, Crisfield MA, Davies GAO, Hellweg HB (1998) Progressive delamination using interface elements. J Compos Mater 32(14):1246–1272

    Article  Google Scholar 

  58. Moeckel GP (1975) Thermodynamics of an interface. Arch Ration Mech Anal 57(3):255–280

    Article  MathSciNet  MATH  Google Scholar 

  59. Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647–1668

    Article  MathSciNet  MATH  Google Scholar 

  60. Mosler J, Stanković L, Radulović R (2011) Efficient modeling of localized material failure by means of a variationally consistent embedded strong discontinuity approach. Int J Numer Meth Eng 88(10):1008–1041

    Article  MathSciNet  MATH  Google Scholar 

  61. Murdoch AI (1976) A thermodynamical theory of elastic material interfaces. Q J Mech Appl Math 29(3):245–275

    Article  MathSciNet  MATH  Google Scholar 

  62. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54(3):525–531

    Article  MATH  Google Scholar 

  63. Nguyen O, Repetto EA, Ortiz M, Radovitzky RA (2001) A cohesive model of fatigue crack growth. Int J Fract 110:351–369

    Article  Google Scholar 

  64. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44:1267–1282

    Article  MATH  Google Scholar 

  65. Ottosen NS (1986) Thermodynamic consequences of strain softening in tension. J Eng Mech 112(11):1152–1164

    Article  Google Scholar 

  66. Ottosen NS, Ristinmaa M (2013) Thermodynamically based fictitious crack/interface model for general normal and shear loading. Int J Solids Struct 50(22–23):3555–3561

    Article  Google Scholar 

  67. Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79

    Article  Google Scholar 

  68. Ottosen NS, Ristinmaa M, Mosler J (2016) Framework for non-coherent interface models at finite displacement jumps and finite strains. J Mech Phys Solids 90:124–141 ISSN 0022-5096

    Article  MathSciNet  Google Scholar 

  69. Özdemir I, Brekelmans WAM, Geers MGD (2010) A Thermo-mechanical cohesive zone model. Comput Mech 46:735–745

    Article  MATH  Google Scholar 

  70. Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297

    Article  Google Scholar 

  71. Park HS, Klein PA (2007) Surface Cauchy–Born analysis of surface stress effects on metallic nanowires. Phys Rev B 75:085408

    Article  Google Scholar 

  72. Park K, Paulino GH (2011) Cohesive zone models: a critical review of traction–separation relationships across fracture surfaces. Appl Mech Rev 64(6):060802

    Article  Google Scholar 

  73. Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908

    Article  Google Scholar 

  74. Parrinello F, Failla B, Borino G (2009) Cohesive-frictional interface constitutive model. Int J Solids Struct 46(13):2680–2692

    Article  MATH  Google Scholar 

  75. Raous M (2011) Interface models coupling adhesion and friction. C R Mec 339(7–8):491–501

    Article  Google Scholar 

  76. Roe KL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech 70:209–232

    Article  Google Scholar 

  77. Schellekens JCJ, Borst RD (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30(9):1239–1253

    Article  MATH  Google Scholar 

  78. Sharma P, Ganti S (2004) Size-dependent Eshelbys tensor for embedded nano-inclusions incorporating surface/interface energies. J Appl Mech 71(5):663–671

    Article  MATH  Google Scholar 

  79. Sharma P, Wheeler LT (2007) Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech 74(3):447–454

    Article  MathSciNet  MATH  Google Scholar 

  80. Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82(4):535–537

    Article  Google Scholar 

  81. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  82. Steigmann DJ, Ogden RW (1999) Elastic surface–substrate interactions. Proc R Soc Lond A 455(1982):437–474

    Article  MathSciNet  MATH  Google Scholar 

  83. Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Meth Eng 46(5):757–779

    Article  MathSciNet  MATH  Google Scholar 

  84. Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56(3):772–800

    Article  MathSciNet  MATH  Google Scholar 

  85. Steinmann P, Larsson R, Runesson K (1997) On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities. Int J Solids Struct 34(8):969–990

    Article  MATH  Google Scholar 

  86. Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng A 125(2):203–213

    Article  Google Scholar 

  87. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J Mech Phys Solids 40(6):1377–1397

    Article  MATH  Google Scholar 

  88. van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234

  89. van den Bosch MJ, Schreurs PJG, Geers MGD (2007) A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation. Eur J Mech A Solids 26:1–19

    Article  MATH  Google Scholar 

  90. van den Bosch MJ, Schreurs PJG, Geers MGD (2008) Identification and characterization of delamination in polymer coated metal sheet. J Mech Phys Solids 56(11):3259–3276

    Article  Google Scholar 

  91. Willam K, Rhee I, Shing B (2004) Interface damage model for thermomechanical degradation of heterogeneous materials. Comput Methods Appl Mech Eng 193(30):3327–3350

    Article  MathSciNet  MATH  Google Scholar 

  92. Xu X-P, Needleman A (1993) Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng 1(2):111

    Article  Google Scholar 

  93. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Plys Solid 42(9):1397–1434

    Article  MATH  Google Scholar 

  94. Yvonnet J, Mitrushchenkov A, Chambaud G, He Q-C (2011) Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comput Methods Appl Mech Eng 200(5–8):614–625

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is performed as part of the Energie Campus Nuremberg and supported by funding through the “Bavaria on the Move” initiative of the state of Bavaria. The authors also gratefully acknowledge the support by the Cluster of Excellence “Engineering of Advanced Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Esmaeili.

Additional information

Dedicated to the memory of Prof. Gérard A. Maugin (December 2, 1944 – September 22, 2016).

Appendix: Some mathematical relations and derivations

Appendix: Some mathematical relations and derivations

In this section we derive the weak form of the balance of forces. Some useful identities and relations used in the derivations are also given without proof.

1.1 Extended divergence theorem

The extended forms of the divergence theorem in the material configuration for a bulk tensor field \(\{\bullet \}\) and a tensorial quantity on the interface \(\left\{ \overline{\bullet }\right\} \) are

$$\begin{aligned} \int _{\mathcal {B}_0} \mathrm {Div}\{\bullet \} \mathrm {d}V&= \int _{\partial \mathcal {B}_0} \left\{ \bullet \right\} \cdot {\varvec{N}} \mathrm {d}A - \int _{ \mathcal {I}_0} \llbracket \bullet \rrbracket \cdot \overline{{\varvec{N}}} \mathrm {d}A, \end{aligned}$$
(42)
$$\begin{aligned} \int _{\mathcal {I}_0} \overline{\mathrm {Div}}\left\{ \overline{\bullet }\right\} \mathrm {d}A&= \int _{\partial \mathcal {I}_0\setminus \partial \mathcal {I}_0^\mathrm {N}} \left\{ \overline{\bullet }\right\} \cdot \widetilde{{\varvec{N}}} \mathrm {d}L+ \int _{\partial \mathcal {I}_0^\mathrm {N}} \left\{ \overline{\bullet }\right\} \cdot \widetilde{{\varvec{N}}} \mathrm {d}L \nonumber \\&\quad - \int _{\mathcal {I}_0} \overline{C} \left\{ \overline{\bullet }\right\} \cdot \overline{{\varvec{N}}} \mathrm {d}A , \end{aligned}$$
(43)

where the curvature of the interface is denoted by \(\overline{C}\). Note that \(\partial \mathcal {I}_0^\mathrm {N}\) is the portion of the interface boundary that intersects with the bulk’s boundary, thus \(\partial \mathcal {I}_0\setminus \partial \mathcal {I}_0^\mathrm {N} \cap \partial \mathcal {B}_0 = \emptyset \).

1.2 Balance of forces and moments on the interface

The global form of the balance of forces both in the bulk and on the interface is given as [see [45], for further details concerning thermomechanical solids with surface energy only]

$$\begin{aligned}&\int _{\mathcal {B}_0} {\varvec{b}}^\mathrm {p} \mathrm {d}V + \int _{\mathcal {I}_0} \overline{\varvec{b}}{}^\mathrm {p} \mathrm {d}A+ \int _{\partial \mathcal {B}_0^\mathrm {N}} \widehat{{\varvec{b}}}{}^\mathrm {p}_\mathrm {N} \mathrm {d}A + \int _{\partial \mathcal {I}_0^\mathrm {N}} \widetilde{{\varvec{b}}}{}^\mathrm {p}_\mathrm {N} \mathrm {d}L \nonumber \\&\quad + \int _{\partial \mathcal {B}_0 \setminus \partial \mathcal {B}_0^\mathrm {N}} {\varvec{P}} \cdot {\varvec{N}} \mathrm {d}A + \int _{\partial \mathcal {I}_0 \setminus \partial \mathcal {I}_0^\mathrm {N}} \overline{{\varvec{P}}} \cdot \widetilde{{\varvec{N}}} \mathrm {d}L= \varvec{0}. \end{aligned}$$
(44)

Taking the limit \(\mathcal {B}_0 \rightarrow \emptyset \), and consequently \({\partial \mathcal {B}_0} = {\mathcal {I}_0}\), with \({\varvec{N}} = \overline{{\varvec{N}}}\) on \({\mathcal {I}_0^+}, {\varvec{N}} = -\overline{{\varvec{N}}}\) on \({\mathcal {I}_0^-}, {\partial \mathcal {I}_0^\mathrm {N}} = \emptyset \), \({\partial \mathcal {B}_0^\mathrm {N}} = \emptyset \), and taking into account the extended forms of the divergence theorem (42) and (43), one obtains the local balance of forces on the interface as

$$\begin{aligned}&\int _{\partial \mathcal {I}_0} \overline{{\varvec{P}}} \cdot \widetilde{{\varvec{N}}} \mathrm {d}L + \int _{\mathcal {I}_0 } {\varvec{P}} \cdot {\varvec{N}} \mathrm {d}A + \int _{\mathcal {I}_0} \overline{\varvec{b}}{}^\mathrm {p} \mathrm {d}A = \varvec{0}\quad \Longrightarrow \nonumber \\&\quad \int _{\mathcal {I}_0} \overline{\mathrm {Div}}~\overline{\varvec{P}} + \llbracket \varvec{P}\rrbracket \cdot \overline{\varvec{N}} + \overline{\varvec{b}}{}^\mathrm {p} \mathrm {d}A = \varvec{0}. \end{aligned}$$
(45)

From arbitrariness of \(\mathcal {B}_0\) and thus \(\mathcal {I}_0\), the balance of force on the interface listed in Table 2 then follows. In the case that the interface is not energetic i.e. \(\overline{\varvec{P}} = \varvec{0}\), and in the absence of interface body force (\(\overline{\varvec{b}}{}^\mathrm {p} = \varvec{0}\)), the classical traction continuity condition is recovered.

The global form of balance of moment in the absence of body forces reads

$$\begin{aligned} \int _{\partial \mathcal {B}_0} {\varvec{r}} \times [{\varvec{P}} \cdot {\varvec{N}}] \mathrm {d}A + \int _{\partial \mathcal {I}_0} \overline{{\varvec{r}}} \times [\overline{{\varvec{P}}}\cdot \widetilde{{\varvec{N}}}]\mathrm {d}L = \varvec{0}, \end{aligned}$$
(46)

where \({\varvec{r}}\) and \(\overline{{\varvec{r}}}\) are the bulk and interface position vectors. Now by using the extended divergence theorem and the relations

$$\begin{aligned}&\int _{\partial \mathcal {B}_0} {\varvec{r}}\times {\varvec{P}} \cdot {\varvec{N}} \,\mathrm {d}A = \int _{\mathcal {B}_0} {\varvec{r}} \times \text {Div} {\varvec{P}} + {\varvec{\varepsilon }} :{\varvec{F}} \cdot {\varvec{P}}^\mathrm {t} \,\mathrm {d}V \quad \text {and} \nonumber \\&\quad \int _{\partial \mathcal {I}_0} \overline{{\varvec{r}}}\times \overline{{\varvec{P}}} \cdot \overline{{\varvec{N}}} \,\mathrm {d}L = \int _{\mathcal {I}_0} \overline{{\varvec{r}}} \times \overline{\text {Div}} \overline{{\varvec{P}}} + {\varvec{\varepsilon }} : \overline{{\varvec{F}}} \cdot \overline{{\varvec{P}}}{}^\mathrm {t} \,\mathrm {d}A,\nonumber \\ \end{aligned}$$
(47)

one obtains

$$\begin{aligned}&\int _{\mathcal {B}_0} {\varvec{r}} \times \text {Div} {\varvec{P}} + {\varvec{\varepsilon }} :{\varvec{F}}^\mathrm {t} \cdot {\varvec{P}} \,\mathrm {d}V + \int _{\mathcal {I}_0} {{\varvec{r}}} \times \llbracket {\varvec{P}}\rrbracket \cdot \overline{{\varvec{N}}} \,\mathrm {d}A \nonumber \\&\quad + \int _{\mathcal {I}_0} \overline{{\varvec{r}}} \times \overline{\text {Div}} \overline{{\varvec{P}}} + {\varvec{\varepsilon }} : \overline{{\varvec{F}}} \cdot \overline{{\varvec{P}}}{}^\mathrm {t} \,\mathrm {d}A = \varvec{0}. \end{aligned}$$
(48)

By taking the limit \(\mathcal {B}_0 \rightarrow \emptyset \), noting that , and using the balance of forces on the interface, listed in Table 2, we find

(49)

which simplifies to

(50)

Now by noting we have

(51)

Note that since in this work the cohesive traction \({\varvec{T}}\) is co-linear with the displacement jump vector \(\llbracket {\varvec{r}} \rrbracket \), the balance of moments on the interface becomes \( \varvec{\varepsilon }: \overline{{\varvec{F}}} \cdot \overline{{\varvec{P}}}{}^\mathrm {t} = \varvec{0}\), thus \(\overline{{\varvec{P}}} \cdot \overline{{\varvec{F}}}{}^\mathrm {t} = \overline{{\varvec{F}}} \cdot \overline{\varvec{P}}{}^\mathrm {t}\).

1.3 Weak form of the balance of forces

The localized balance equations in the bulk and on the interface, given in Table 2 are tested from the left with vector valued functions \(\delta {\varvec{\varphi }}\) and \(\delta \overline{\varvec{\varphi }}\), respectively as follows

$$\begin{aligned}&\int _{\mathcal {B}_0} \delta {\varvec{\varphi }} \cdot [~ \mathrm {Div}{\varvec{P}} + {\varvec{b}}^\mathrm {p} ~] \mathrm {d}V \nonumber \\&\quad + \int _{\mathcal {I}_0} \delta \overline{{\varvec{\varphi }}} \cdot [~ \overline{\mathrm {Div}}\, \overline{{\varvec{P}}} + \overline{{\varvec{b}}}{}^\mathrm {p} + \llbracket {\varvec{P}}\rrbracket \cdot \overline{{\varvec{N}}} ~] \mathrm {d}A = 0. \end{aligned}$$
(52)

which can be alternatively written as

$$\begin{aligned}&\int _{\mathcal {B}_0} -{\varvec{P}} : \mathrm {Grad}\delta {\varvec{\varphi }} + \mathrm {Div}( \delta {\varvec{\varphi }} \cdot {\varvec{P}}) + \delta {\varvec{\varphi }} \cdot {\varvec{b}}^\mathrm {p} \mathrm {d}V \nonumber \\&\quad + \int _{\mathcal {I}_0} -\overline{{\varvec{P}}} : \overline{\mathrm {Grad}}\delta \overline{{\varvec{\varphi }}} + \overline{\mathrm {Div}}( \delta \overline{{\varvec{\varphi }}} \cdot \overline{{\varvec{P}}}) \mathrm {d}A \nonumber \\&\quad + \int _{\mathcal {I}_0} \delta \overline{{\varvec{\varphi }}} \cdot \overline{\varvec{b}}{}^\mathrm {p} + \delta \overline{{\varvec{\varphi }}} \cdot [~\llbracket \varvec{P}\rrbracket \cdot \overline{{\varvec{N}}} ~] \mathrm {d}A = 0, \end{aligned}$$
(53)

and using the extended forms of divergence theorem (42) and (43), for various parts of the body results in

$$\begin{aligned}&\int _{\mathcal {B}_0} {\varvec{P}} : \mathrm {Grad}\delta {\varvec{\varphi }} \mathrm {d}V - \int _{\partial \mathcal {B}_0^\mathrm {N}} \delta {\varvec{\varphi }} \cdot [~ {\varvec{P}} \cdot {\varvec{N}} ~] \mathrm {d}A \nonumber \\&\quad + \int _{\mathcal {I}_0} \llbracket \delta {{\varvec{\varphi }}} \cdot {\varvec{P}}\rrbracket \cdot \overline{{\varvec{N}}}\mathrm {d}A - \int _{\mathcal {B}_0} \delta {\varvec{\varphi }} \cdot {\varvec{b}}^\mathrm {p} \mathrm {d}V \nonumber \\&\quad + \int _{\mathcal {I}_0} \overline{{\varvec{P}}} : \overline{\mathrm {Grad}}\delta \overline{{\varvec{\varphi }}}\mathrm {d}A - \int _{\partial \mathcal {I}_0^{\mathrm {N}}} \delta \overline{{\varvec{\varphi }}} \cdot [~\overline{{\varvec{P}}} \cdot \widetilde{{\varvec{N}}}~]\mathrm {d}L\nonumber \\&\quad - \int _{\mathcal {I}_0} \delta \overline{{\varvec{\varphi }}} \cdot \overline{\varvec{b}}{}^\mathrm {p} + \delta \overline{{\varvec{\varphi }}} \cdot [~\llbracket \varvec{P}\rrbracket \cdot \overline{{\varvec{N}}} ~] \mathrm {d}A = 0 . \end{aligned}$$
(54)

On the Neumann boundaries of the bulk and interface, \({\varvec{P}} \cdot {\varvec{N}} = \widehat{{\varvec{b}}}_\mathrm {N}^\mathrm {p} \) and \(\overline{{\varvec{P}}} \cdot \widetilde{{\varvec{N}}} = \widetilde{{\varvec{b}}}{}^\mathrm {p} _\mathrm {N} \), respectively. Noting , Eq. (54) takes the form

(55)

Since \(\llbracket \delta {{\varvec{\varphi }}} \rrbracket \ne \varvec{0}\), for non-coherent interfaces, and , Eq. (55) simplifies to the weak form Eq. (32).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, A., Steinmann, P. & Javili, A. Non-coherent energetic interfaces accounting for degradation. Comput Mech 59, 361–383 (2017). https://doi.org/10.1007/s00466-016-1342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1342-7

Keywords

Navigation