Computational Mechanics

, Volume 59, Issue 1, pp 147–160 | Cite as

Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip

  • Hayoung Chung
  • Jung-Hoon Yun
  • Joonmyung Choi
  • Maenghyo Cho
Original Paper

Abstract

In a nematic solid, wherein liquid crystal molecules are incorporated into polymeric chains, the chromophore phase is projected onto the polymer conformation, changing the stress-free configuration metric. Stimulated actuation cannot be separated from the structure itself, since the mesoscopic polymer properties dictate the degree and type of shape change. In this research, we focused on self-deforming device programming, inspired by recent optical techniques, to pattern nontrivial alignment textures and induce exotic strain fields on specimens. A finite-element framework incorporating a light-thermo-order coupled constitutive relation and geometric nonlinearities was utilized to compute mechanical deformations for given external stimuli. The distortion of planar strips into various exotic 3D shapes was simulated, and disclination-defect-like liquid crystal texture topographies with different defect strengths produced various many-poled shapes upon irradiation, as observed experimentally. The effects of the boundary conditions and geometric nonlinearities were also examined, exemplifying the need for a comprehensive finite-element-based framework. The same method was applied to textures naturally emerging due to static distortion, and the effects of the prescribed inhomogeneities on the overall deformations, which is the basis of inverse design, were observed. Furthermore, we analyzed the local Poisson-effect-induced instability resulting from inscribing a hedgehog disclination texture onto a solid; the onset of buckling-like deformations was observed energetically, and the relations between this onset and other physical properties were elucidated to enable microstate design while maintaining structural stability. These results will facilitate the development and comprehension of the mechanisms of remotely light-controlled self-assembly and propulsion systems that may soon be realized.

Keywords

Finite-element analysis Multiphysics Nematic solids Optical textures Smart materials 

References

  1. 1.
    de Gennes PG, Prost J (1993) The physics of liquid crystals. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Warner M, Terentjev EM (2006) Liquid crystal elastomers. Clarendon Press, OxfordMATHGoogle Scholar
  3. 3.
    Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501CrossRefGoogle Scholar
  4. 4.
    van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8:677–82. doi:10.1038/nmat2487 CrossRefGoogle Scholar
  5. 5.
    White TJ, Tabiryan NV, Serak SV et al (2008) A high frequency photodriven polymer oscillator. Soft Matter 4:1796–1798CrossRefGoogle Scholar
  6. 6.
    Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307–310CrossRefGoogle Scholar
  7. 7.
    Jiang HY, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475CrossRefGoogle Scholar
  8. 8.
    Chen M, Xing X, Liu Z et al (2010) Photodeformable polymer material: towards light-driven micropump applications. Appl Phys A 100:39–43. doi:10.1007/s00339-010-5853-3 CrossRefGoogle Scholar
  9. 9.
    Torras N, Zinoviev KE, Camargo CJ et al (2014) Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuators A 208:104–112. doi:10.1016/j.sna.2014.01.012 CrossRefGoogle Scholar
  10. 10.
    Chung H, Choi J, Yun J-H, Cho M (2015) Light and thermal responses of liquid-crystal-network films: a finite element study. Phys Rev E 91:1–12CrossRefGoogle Scholar
  11. 11.
    Chung H, Choi J, Yun J-H, Cho M (2016) Nonlinear photomechanics of nematic networks: upscaling microscopic behaviour to macroscopic deformation. Sci Rep 6:20026CrossRefGoogle Scholar
  12. 12.
    Cheng L, Torres Y, Min Lee K et al (2012) Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films. J Appl Phys 112:013513. doi:10.1063/1.4729771 CrossRefGoogle Scholar
  13. 13.
    Lin Y, Jin L, Huo Y (2012) Quasi-soft opto-mechanical behavior of photochromic liquid crystal elastomer: linearized stress-strain relations and finite element simulations. Int J Solids Struct 49:2668–2680CrossRefGoogle Scholar
  14. 14.
    Jin L, Zeng Z, Huo Y (2010) Thermomechanical modeling of the thermo-ordermechanical coupling behaviors in liquid crystal elastomers. J Mech Phys Solids 58:1907–1927MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Sánchez-Ferrer A, Finkelmann H (2013) Opto-mechanical effect in photoactive nematic main-chain liquid-crystalline elastomers. Soft Matter 9:4621. doi:10.1039/c3sm27341e CrossRefGoogle Scholar
  16. 16.
    Yu Y, Nakano M, Shishido A et al (2004) Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene. Chem Mater 16:1637–1643. doi:10.1021/cm035092g CrossRefGoogle Scholar
  17. 17.
    van Oosten CL, Harris KD, Bastiaansen CWM, Broer DJ (2007) Glassy photomechanical liquid-crystal network actuators for microscale devices. Eur Phys J E 23:329–336CrossRefGoogle Scholar
  18. 18.
    Skandani AA, Chatterjee S, Smith ML et al (2016) Discrete-state photomechanical actuators. Extrem Mech Lett. doi:10.1016/j.eml.2016.05.002
  19. 19.
    Modes CD, Bhattacharya K, Warner M (2010) Gaussian curvature from flat elastica sheets. Proc R Soc A Math Phys Eng Sci 467:1121–1140. doi:10.1098/rspa.2010.0352 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Modes CD, Warner M (2011) Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. Phys Rev E 84:021711. doi:10.1103/PhysRevE.84.021711 CrossRefGoogle Scholar
  21. 21.
    de Haan LT, Sánchez-Somolinos C, Bastiaansen CMW et al (2012) Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew Chem Int Ed Engl 51:12469–72. doi:10.1002/anie.201205964 CrossRefGoogle Scholar
  22. 22.
    Sun Y, Evans JS, Lee T et al (2012) Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett 100:1–5. doi:10.1063/1.4729143 Google Scholar
  23. 23.
    McConney ME, Martinez A, Tondiglia VP et al (2013) Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv Mater 25:5880–5. doi:10.1002/adma.201301891 CrossRefGoogle Scholar
  24. 24.
    Dunn ML, Maute K (2009) Photomechanics of blanket and patterned liquid crystal elastomer films. Mech Mater 41:1083–1089. doi:10.1016/j.mechmat.2009.06.004 CrossRefGoogle Scholar
  25. 25.
    Pismen LM (2014) Metric theory of nematoelastic shells. Phys Rev E 90:4–8. doi:10.1103/PhysRevE.90.060501 CrossRefGoogle Scholar
  26. 26.
    Zakharov a P, Pismen LM (2015) Reshaping nemato-elastic sheets. Eur Phys J E 38:1–4. doi:10.1140/epje/i2015-15075-6 CrossRefGoogle Scholar
  27. 27.
    Cirak F, Long Q, Bhattacharya K, Warner M (2014) Computational analysis of liquid crystalline elastomer membranes: changing Gaussian curvature without stretch energy. Int J Solids Struct 51:144–153. doi:10.1016/j.ijsolstr.2013.09.019 CrossRefGoogle Scholar
  28. 28.
    Matsuyama A (2009) Phase separations in mixtures of a liquid crystal and a nanocolloidal particle. J Chem Phys. doi:10.1063/1.3266509
  29. 29.
    Khatua S, Manna P, Chang W et al (2010) Plasmonic nanoparticles—liquid crystal composites \({\dagger }\). J Phys Chem C 114:7251–7257. doi:10.1021/jp907923v CrossRefGoogle Scholar
  30. 30.
    Hogan PM, Tajbakhsh AR, Terentjev EM (2002) UV manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 65:041720. doi:10.1103/PhysRevE.65.041720 CrossRefGoogle Scholar
  31. 31.
    Choi J, Chung H, Yun J-H, Cho M (2014) Photo-isomerization effect of the azobenzene chain on the opto-mechanical behavior of nematic polymer: A molecular dynamics study. Appl Phys Lett 105:221906. doi:10.1063/1.4903247 CrossRefGoogle Scholar
  32. 32.
    Corbett D, Warner M (2007) Linear and nonlinear photoinduced deformations of cantilevers. Phys Rev Lett 99:174302. doi:10.1103/PhysRevLett.99.174302 CrossRefGoogle Scholar
  33. 33.
    Felippa CA, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I theory. Comput Methods Appl Mech Eng 194:2285–2335. doi:10.1016/j.cma.2004.07.035 CrossRefMATHGoogle Scholar
  34. 34.
    Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168. doi:10.1016/S0045-7825(03)00253-6 CrossRefMATHGoogle Scholar
  35. 35.
    Batoz J-L, Bathe K-J, Ho L-W (1981) A study of three-node triangular plate bending elements. Comput Des 13:244. doi:10.1016/0010-4485(81)90186-X MATHGoogle Scholar
  36. 36.
    Pajot JM, Maute K, Zhang Y, Dunn ML (2006) Design of patterned multilayer films with eigenstrains by topology optimization. Int J Solids Struct 43:1832–1853. doi:10.1016/j.ijsolstr.2005.03.036
  37. 37.
    de Haan LT, Gimenez-Pinto V, Konya A et al (2014) Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv Funct Mater 24:1251–1258. doi:10.1002/adfm.201302568 CrossRefGoogle Scholar
  38. 38.
    White TJ, Broer DJ (2015) Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 14:1087–98. doi:10.1038/nmat4433 CrossRefGoogle Scholar
  39. 39.
    Mbanga BL, Ye F, Selinger JV, Selinger RLB (2010) Modeling elastic instabilities in nematic elastomers. Phys Rev E 82:051701. doi:10.1103/PhysRevE.82.051701 CrossRefGoogle Scholar
  40. 40.
    Adler JH, Atherton TJ, Emerson DB, MacLachlan SP (2015) An energy-minimization finite-element approach for the Frank–Oseen model of nematic liquid crystals. SIAM J Numer Anal 53:2226–2254. doi:10.1137/140956567 MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Alouges F (1997) A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J Numer Anal 34:1708–1726. doi:10.1137/S0036142994264249 MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Vitelli V, Nelson DR (2006) Nematic textures in spherical shells. Phys Rev E 74:021711. doi:10.1103/PhysRevE.74.021711 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Faetti S (1987) Azimuthal anchoring energy of a nematic liquid crystal at a grooved interface. Phys Rev A 36:408–410. doi:10.1103/PhysRevA.36.408 CrossRefGoogle Scholar
  44. 44.
    Jose R, Skačej G, Sastry VSS, Žumer S (2014) Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation. Phys Rev E 90:032503. doi:10.1103/PhysRevE.90.032503 CrossRefGoogle Scholar
  45. 45.
    Nealon GL, Greget R, Dominguez C et al (2012) Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem 8:349–370. doi:10.3762/bjoc.8.39 CrossRefGoogle Scholar
  46. 46.
    Lee JG, Ryu J, Kim SW et al (2015) Effect of initial tool-plate curvature on snap-through load of unsymmetric laminated cross-ply bistable composites. Compos Struct 122:82–91. doi:10.1016/j.compstruct.2014.11.037 CrossRefGoogle Scholar
  47. 47.
    ABAQUS (2011) ABAQUS documentation. Providence, RIGoogle Scholar
  48. 48.
    Torras Núria, Zinoviev KE, Jaume Esteve AS-F (2013) Liquid-crystalline elastomer micropillar array for haptic actuation. J Mater Chem C 1:1–8CrossRefGoogle Scholar
  49. 49.
    de Borst R, Crisfield MA, Remmers JJC, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New YorkCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hayoung Chung
    • 1
  • Jung-Hoon Yun
    • 1
  • Joonmyung Choi
    • 1
  • Maenghyo Cho
    • 1
  1. 1.Multiscale Mechanical Design Division, Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations