Computational Mechanics

, Volume 58, Issue 3, pp 533–548 | Cite as

A new simple multidomain fast multipole boundary element method

  • S. Huang
  • Y. J. Liu
Original Paper


A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.


Multidomain problems Domain decomposition Boundary element method Fast multipole method 



The authors would like to acknowledge the support of Ohio Supercomputer Center (OSC). All the computing jobs for the examples were done on the “Oakley” cluster at OSC.


  1. 1.
    Kompiš V (2002) Selected topics in boundary integral formulations for solids and fluids., CISM courses and lectures/International Centre for Mechanical SciencesSpringer, New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    Gao XW, Wang J (2009) Interface integral BEM for solving multi-medium heat conduction problems. Eng Anal Bound Elem 33(4):539–546. doi: 10.1016/j.enganabound.2008.08.009 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Du F, Lovell MR, Wu TW (2001) Boundary element method analysis of temperature fields in coated cutting tools. Int J Solids Struct 38(26–27):4557–4570. doi: 10.1016/S0020-7683(00)00291-2 CrossRefzbMATHGoogle Scholar
  4. 4.
    Florez WF, Power H, Chejne F (2002) Numerical solution of thermal convection problems using the multidomain boundary element method. Numer Methods Partial Differ Equ 18(4):469–489. doi: 10.1002/num.10016 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yu W, Wang Z, Hong X (2004) Preconditioned multi-zone boundary element analysis for fast 3D electric simulation. Eng Anal Bound Elem 28(9):1035–1044. doi: 10.1016/j.enganabound.2004.02.006 CrossRefzbMATHGoogle Scholar
  6. 6.
    Ramšak M, Škerget L (2007) 3D multidomain BEM for solving the Laplace equation. Eng Anal Bound Elem 31(6):528–538. doi: 10.1016/j.enganabound.2006.10.006 CrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang J (2008) Multidomain thermal simulation of CNT composites by hybrid BNM. Numer Heat Transf Part B: Fundam 53(3):246–258. doi: 10.1080/10407790701790176 CrossRefGoogle Scholar
  8. 8.
    Liu YJ (2008) A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation. Comput Mech 42(5):761–773. doi: 10.1007/s00466-008-0274-2 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang H, Yao Z, Wang P (2005) On the preconditioners for fast multipole boundary element methods for 2D multi-domain elastostatics. Eng Anal Bound Elem 29(7):673–688. doi: 10.1016/j.enganabound.2005.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gao XW, Guo L, Zhang C (2007) Three-step multi-domain BEM solver for nonhomogeneous material problems. Eng Anal Bound Elem 31(12):965–973. doi: 10.1016/j.enganabound.2007.06.002 CrossRefzbMATHGoogle Scholar
  11. 11.
    Gao XW, Yang K (2009) Interface integral BEM for solving multi-medium elasticity problems. Comput Methods Appl Mech Eng 198(15–16):1429–1436. doi: 10.1016/j.cma.2008.12.007 CrossRefzbMATHGoogle Scholar
  12. 12.
    Layton JB, Ganguly S, Balakrishna C, Kane JH (1997) A symmetric Galerkin multi-zone boundary element formulation. Int J Numer Methods Eng 40:2913–2931MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gao XW, Davies TG (2000) 3D multi-region BEM with corners and edges. Int J Solids Struct 37(11):1549–1560. doi: 10.1016/S0020-7683(98)00276-5 CrossRefzbMATHGoogle Scholar
  14. 14.
    Luo JF, Liu YJ, Berger EJ (2000) Interfacial stress analysis for multi-coating systems using an advanced boundary element method. Comput Mech 24(6):448–455. doi: 10.1007/s004660050004 CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang J, Zhuang C, Qin X, Li G, Sheng X (2010) FMM-accelerated hybrid boundary node method for multi-domain problems. Eng Anal Bound Elem 34(5):433–439. doi: 10.1016/j.enganabound.2009.12.005 CrossRefzbMATHGoogle Scholar
  16. 16.
    Wu TW (2008) Multi-domain boundary element method in acoustics. In: Marburg S, Nolte B (eds) Computational acoustics of noise propagation in fluids—finite and boundary element methods. Springer, Berlin, pp 367–386. doi: 10.1007/978-3-540-77448-8_14 CrossRefGoogle Scholar
  17. 17.
    Kallivokas LF, Juneja T, Bielak J (2005) A symmetric Galerkin BEM variational framework for multi-domain interface problems. Comput Method Appl Mech Eng 194(34–35):3607–3636. doi: 10.1016/j.cma.2004.07.034 CrossRefzbMATHGoogle Scholar
  18. 18.
    Sarradj E (2003) Multi-domain boundary element method for sound fields in and around porous absorbers. Acta Acust United Acust 89(1):21–27Google Scholar
  19. 19.
    Cheng CYR, Seybert AF, Wu TW (1991) A multidomain boundary element solution for silencer and muffler performance prediction. J Sound Vib 151(1):119–129. doi: 10.1016/0022-460X(91)90655-4 CrossRefGoogle Scholar
  20. 20.
    Wu HJ, Liu YJ, Jiang WK (2012) A fast multipole boundary element method for 3D multi-domain acoustic scattering problems based on the Burton-Miller formulation. Eng Anal Bound Elem 36(5):779–788. doi: 10.1016/j.enganabound.2011.11.018 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chaillat S, Bonnet M, Semblat JF (2009) A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures. Geophys J Int 177(2):509–531. doi: 10.1111/j.1365-246X.2008.04041.x CrossRefGoogle Scholar
  22. 22.
    Ahmad S, Banerjee PK (1988) Multi-domain BEM for two-dimensional problems of elastodynamics. Int J Numer Methods Eng 26:891–911CrossRefzbMATHGoogle Scholar
  23. 23.
    Maier G, Diligenti M, Carini A (1991) A variational approach to boundary element elastodynamic analysis and extension to multidomain problems. Comput Method Appl Mech Eng 92(2):193–213. doi: 10.1016/0045-7825(91)90239-3 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ramšak M, Škerget L (2005) A multidomain boundary element method for two equation turbulence models. Eng Anal Bound Elem 29(12):1086–1103. doi: 10.1016/j.enganabound.2005.07.007 CrossRefzbMATHGoogle Scholar
  25. 25.
    Ramšak M, Škerget L, Hriberšek M, Žunič Z (2005) A multidomain boundary element method for unsteady laminar flow using stream function-vorticity equations. Eng Anal Bound Elem 29(1):1–14. doi: 10.1016/j.enganabound.2004.09.002 CrossRefzbMATHGoogle Scholar
  26. 26.
    Florez WF, Power H (2001) Comparison between continuous and discontinuous boundary elements in the multidomain dual reciprocity method for the solution of the two-dimensional Navier-Stokes equations. Eng Anal Bound Elem 25(1):57–69. doi: 10.1016/S0955-7997(00)00051-5 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Brebbia C, Power H, Škerget L (2007) Domain decomposition techniques for boundary elements: application to fluid flow. WIT Press, SouthamptonzbMATHGoogle Scholar
  28. 28.
    Chen T, Wang B, Cen Z, Wu Z (1999) A symmetric Galerkin multi-zone boundary element method for cohesive crack growth. Eng Fract Mech 63:591–609CrossRefGoogle Scholar
  29. 29.
    Doblare M, Espiga F, Gracia L, Alcantud M (1990) Study of crack propagation in orthotropic materials by using the boundary element method. Eng Fract Mech 37(5):953–967. doi: 10.1016/0013-7944(90)90020-H CrossRefGoogle Scholar
  30. 30.
    DavıI G, Milazzo A (2001) Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int J Solids Struct 38(40–41):7065–7078. doi: 10.1016/S0020-7683(00)00416-9 CrossRefzbMATHGoogle Scholar
  31. 31.
    Kane JH, Kashava Kumar BL, Saigal S (1990) An arbitrary condensing, noncondensing solution strategy for large scale, multi-zone boundary element analysis. Comput Method Appl Mech Eng 79(2):219–244. doi: 10.1016/0045-7825(90)90133-7
  32. 32.
    Rigby RH, Aliabadi MH (1995) Out-of-core solver for large, multi-zone boundary element matrices. Int J Numer Methods Eng 38(9):1507–1533. doi: 10.1002/nme.1620380905 CrossRefzbMATHGoogle Scholar
  33. 33.
    Hsiao GC, Wendland W (1991) Domain decomposition in boundary element method. Paper presented at the fourth international symposium on domain decomposition methods for partial differential equations, PhiladelphiaGoogle Scholar
  34. 34.
    Hsiao GC, Steinbach O, Wendland WL (2000) Domain decomposition methods via boundary integral equations. J Comput Appl Math 125:521–537MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Langer U, Of G, Steinbach O, Zulehner W (2007) Inexact fast multipole boundary element tearing and interconnecting methods. SIAM J Sci Comput 29:290–314MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Of G, Steinbach O (2009) The all-floating boundary element tearing and interconnecting method. J Numer Math 17(4):277–298. doi: 10.1515/JNUM.2009.014 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Langer U, Steinbach O (2003) Boundary element tearing and interconnecting methods. Computing 71(3):205–228. doi: 10.1007/s00607-003-0018-2 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comp Phys 60:187–207MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Greengard LF, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Greengard LF (1988) The rapid evaluation of potential fields in particle systems. The MIT Press, CambridgezbMATHGoogle Scholar
  41. 41.
    Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4 (July)):299–324CrossRefGoogle Scholar
  42. 42.
    Liu YJ, Nishimura N (2006) The fast multipole boundary element method for potential problems: a tutorial. Eng Anal Bound Elem 30(5):371–381CrossRefzbMATHGoogle Scholar
  43. 43.
    Liu YJ (2009) Fast multipole boundary element method—theory and applications in engineering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. 44.
    Pechstein C (2009) Boundary element tearing and interconnecting methods in unbounded domains. Appl Numer Math 59(11):2824–2842. doi: 10.1016/j.apnum.2008.12.031
  45. 45.
    Ingber MS, Tanski JA, Alsing P (2007) A domain decomposition tool for boundary element methods. Eng Anal Bound Elem 31(11):890–896. doi: 10.1016/j.enganabound.2007.03.002 CrossRefzbMATHGoogle Scholar
  46. 46.
    Bui TT, Popov V (2009) Domain decomposition boundary element method with overlapping sub-domains. Eng Anal Bound Elem 33(4):456–466. doi: 10.1016/j.enganabound.2008.09.002 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86:565–589MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zhang J, Lu C, Li Y, Han L, Wang P, Li G (2014) A domain renumbering algorithm for multi-domain boundary face method. Eng Anal Bound Elem 44:19–27. doi: 10.1016/j.enganabound.2014.04.009 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Chen K (2005) Matrix preconditioning techniques and applications. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  50. 50.
    Saad Y (2003) Iterative methods for sparse linear system, 2nd edn. The Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Institute for Computational Mechanics and Its ApplicationsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations