Computational Mechanics

, Volume 58, Issue 1, pp 45–57 | Cite as

Time domain BEM for sound radiation of tires

  • Lothar Banz
  • Heiko Gimperlein
  • Zouhair Nezhi
  • Ernst P. Stephan
Original Paper
  • 304 Downloads

Abstract

This work investigates a time domain boundary element method for the acoustic wave equation in an exterior domain in the half-space \(\mathbb {R}^3_+\). The Neumann problem is formulated as a boundary integral equation of the second kind, and the convergence and stability of conforming Galerkin approximations is studied in the complex geometry of a car or truck tire above a street. After a validation experiment, numerical results are presented in time or frequency domain for realistic benchmarks in traffic noise: the sound emission of vibrating tires, noise amplification in the horn-like geometry between the tire and the road, as well as the Doppler effect of a moving tire. The results are compared with calculations in frequency domain.

Keywords

Time domain BEM Sound radiation  Horn effect Computational acoustics Boundary elements 

References

  1. 1.
    Ding Y, Forestier A, Duong TH (1989) A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface. J Acoust Soc Am 86(4):1566–1572CrossRefGoogle Scholar
  2. 2.
    Friedmann M, Shaw R (1962) Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J Appl Mech 29:40–46MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cruse TA, Rizzo FJ (1968) A direct formulation and numerical solution of the general transient elastodynamic problem I. J Math Anal Appl 22:244–259CrossRefMATHGoogle Scholar
  4. 4.
    Mansur WJ (1983) A time-stepping technique to solve wave propagation problems using the boundary element method. Ph.D. thesis, University of SouthamptonGoogle Scholar
  5. 5.
    Bamberger A, Ha-Duong T (1986) Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la diffraction d’une onde acoustique. Math Methods Appl Sci 8:405–435MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Terrasse I (1993) Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés. Ph.D. thesis, École PolytechniqueGoogle Scholar
  7. 7.
    Ha-Duong T, Ludwig B, Terrasse I (2003) A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Int J Numer Methods Eng 57(13):1845–1882MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Maischak M, Ostermann E, Stephan EP (2009) TD-BEM for sound radiation in three dimensions and the numerical evaluation of retarded potentials. In: Proceedings of the NAG/DAGA 2009 international conference on acoustics. Rotterdam, pp 633–636Google Scholar
  9. 9.
    Stephan EP, Maischak M, Ostermann E (2008) Transient boundary element method and numerical evaluation of retarded potentials. In: Computational science–ICCS 2008, pp 321–330. Springer, BerlinGoogle Scholar
  10. 10.
    Ostermann E (2009) Numerical methods for space-time variational formulations of retarded potential boundary integral equations. Ph.D. thesis, Leibniz Universität HannoverGoogle Scholar
  11. 11.
    Banjai L, Sauter S (2008/2009) Rapid solution of the wave equation in unbounded domains. SIAM J Numer Anal 47:227–249Google Scholar
  12. 12.
    Banjai L, Schanz M (2012) Wave propagation problems treated with convolution quadrature and bem. In: Fast boundary element methods in engineering and industrial applications. Lecture notes in applied and computational mechanics, vol 63. Springer, Berlin, pp 145–184Google Scholar
  13. 13.
    Ochmann M (2011) Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane. J Acoust Soc Am 129(6):3502–3512MathSciNetCrossRefGoogle Scholar
  14. 14.
    Stütz M, Ochmann M (2008) Stability behaviour and results of a transient boundary element method for exterior radiation problems. Acoustics08—ParisGoogle Scholar
  15. 15.
    Stütz M, Ochmann M (2009) Simulation of transient sound radiation using the time domain boundary element method. In: Proceedings of the NAG/DAGA 2009 international conference on acoustics. Rotterdam, pp 629–632Google Scholar
  16. 16.
    Antes H, Baaran J (2001) Noise radiation from moving surfaces. Eng Anal Bound Elem 25:725–740CrossRefMATHGoogle Scholar
  17. 17.
    Gennaretti M, Morino L (1992) A boundary element method for the potential, compressible aerodynamics of bodies in arbitrary motion. Aeronaut J 96:15–19Google Scholar
  18. 18.
    Rasmussen KM, Nielsen SRK, Kirkegaard PH (2001) Boundary element method solution in the time domain for a moving time-dependent force. Comput Struct 79:691–701CrossRefGoogle Scholar
  19. 19.
    Hatzigeorgiou GD, Beskos DE (2011) Dynamic inelastic structural analysis by the bem: a review. Eng Anal Bound Elem 35:159–169Google Scholar
  20. 20.
    Stavroulakis GE, Antes H, Panagiotopoulos PD (1999) Transient elastodynamics around cracks including contact and friction. Comput Methods Appl Mech Eng 177:427–440MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Abboud T, Joly P, Rodriguez J, Terrasse I (2011) Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J Comput Phys 230(15):5877–5907MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Banjai L, Kachanovska M (2014) Fast convolution quadrature for the wave equation in three dimensions. J Comput Phys 279:103–126MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sylvand G (2002) La methode multipole rapide en electromagnetisme: performances, parallelisation, applications. Ph.D. thesis, Ecole Nationale des Ponts et ChausseesGoogle Scholar
  24. 24.
    Costabel M (2004) Time-dependent problems with the boundary integral equation method. Encyclopedia of computational mechanics 1, Ch 25Google Scholar
  25. 25.
    Ha-Duong T (2003) On retarded potential boundary integral equations and their discretisation. In: Ainsworth M, Davies P, Duncan DB, Martin PA, Rynne B (eds) Topics in computational wave propagation. Springer, Berlin, pp 301–336Google Scholar
  26. 26.
    Sayas FJ (2013) Retarded potentials and time domain boundary integral equations: a road-map. Lecture notesGoogle Scholar
  27. 27.
    Gimperlein H, Nezhi Z, Stephan EP (2015) A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space. Math Methods Appl Sci doi:10.1002/mma.3340
  28. 28.
    Epstein CL, Greengard L, Hagstrom T (2015) On the stability of time-domain integral equations for acoustic wave propagation. PreprintGoogle Scholar
  29. 29.
    Nezhi Z (2014) Adaptive time domain boundary element method for sound radiation of tyres. Ph.D. thesis, Leibniz Universität HannoverGoogle Scholar
  30. 30.
    Veit A (2011) Numerical methods for the time-domain boundary integral equations. Ph.D. thesis, Universität ZürichGoogle Scholar
  31. 31.
    von Estorff O et al (2014) Abschlussbericht SPERoN 2020—Teil II, Entwicklung eines performanten Rechenmodells zur Berechnung und Reduzierung der Geräuschabstrahlung von ReifenGoogle Scholar
  32. 32.
    Hoever C (2012) The influence of modelling parameters on the simulation of car tyre rolling losses and rolling noise. Ph.D. thesis, Chalmers University of TechnologyGoogle Scholar
  33. 33.
    Kropp W, Sabiniarz P, Brick H, Beckenbauer T (2012) On the sound radiation of a rolling tyre. J Sound Vib 331(8):1789–1805CrossRefGoogle Scholar
  34. 34.
    Gimperlein H, Nehzi Z, Stephan EP (2015) A residual a posteriori error estimate for the time-domain boundary element method. In preparationGoogle Scholar
  35. 35.
    Keuchel S, Gehlken M, von Estorff O (2012) Halfspace formulations for the boundary element method in 3D-acoustics using the fast multipole method. In: Proceedings of the 19th international congress on sound and vibrationGoogle Scholar
  36. 36.
    Kropp W, Bécot FX, Barrelet S (2000) On the sound radiation from tyres. Acta Acust United Acust 86(5):769–779Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lothar Banz
    • 1
  • Heiko Gimperlein
    • 2
    • 3
  • Zouhair Nezhi
    • 4
  • Ernst P. Stephan
    • 4
  1. 1.Department of MathematicsUniversity of SalzburgSalzburgAustria
  2. 2.Maxwell Institute for Mathematical Sciences and Department of MathematicsHeriot-Watt UniversityEdinburghUK
  3. 3.Institut für MathematikUniversität PaderbornPaderbornGermany
  4. 4.Institute of Applied MathematicsLeibniz University HannoverHannoverGermany

Personalised recommendations