Advertisement

Computational Mechanics

, Volume 57, Issue 6, pp 1017–1035 | Cite as

Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity

  • Thomas WickEmail author
Original Paper

Abstract

In this study, a posteriori error estimation and goal-oriented mesh adaptivity are developed for phase-field fracture propagation. Goal functionals are computed with the dual-weighted residual (DWR) method, which is realized by a recently introduced novel localization technique based on a partition-of-unity (PU). This technique is straightforward to apply since the weak residual is used. The influence of neighboring cells is gathered by the PU. Consequently, neither strong residuals nor jumps over element edges are required. Therefore, this approach facilitates the application of the DWR method to coupled (nonlinear) multiphysics problems such as fracture propagation. These developments then allow for a systematic investigation of the discretization error for certain quantities of interest. Specifically, our focus on the relationship between the phase-field regularization and the spatial discretization parameter in terms of goal functional evaluations is novel.

Keywords

Finite elements A posteriori error estimation  Dual weighted residuals Adaptivity Phase-field fracture 

Mathematics Subject Classification (2010)

65N30 65N50 49M15 35Q74 74R10 

Notes

Acknowledgments

I wish to thank the reviewers for their critical comments that helped to improve the manuscript. Moreover, I am grateful to Ivo Babuska (ICES, UT Austin) for very initial discussions on error estimation of finite element discretizations for fracture modeling during my 2-year-stay at ICES from 2012 to 2014. The same acknowledgments go to Franz-Theo Suttmeier (Univ. Siegen) who gave some hints to mesh adaptation strategies for quasi-stationary evolution problems. Finally, I thank Mary F. Wheeler (ICES, UT Austin) and Andro Mikelić (Univ. Lyon) for our joint start on phase-field fracture modeling in poroelasticity and in particular pressurized fracture techniques.

References

  1. 1.
    Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambrosio L, Tortorelli V (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\gamma \)-convergence. Commun Pure Appl Math 43:999–1036MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrosio L, Tortorelli V (1992) On the approximation of free discontinuity problems. Boll Unione Mat Ital B 6:105–123MathSciNetzbMATHGoogle Scholar
  5. 5.
    Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229CrossRefzbMATHGoogle Scholar
  6. 6.
    Andersson J, Mikayelyan H (2015) The asymptotics of the curvature of the free discontinuity set near the cracktip for the minimizers of the Mumford–Shah functional in the plain. A revision. https://scirate.com/arxiv/1204.5328
  7. 7.
    Apel T, Saendig A-M, Whiteman JR (1996) Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math Methods Appl Sci 19(1):63–85MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):B633–B659MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Lectures in mathematics. Birkhäuser, ETH, ZürichCrossRefzbMATHGoogle Scholar
  10. 10.
    Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bangerth W, Heister T, Kanschat G (2012) Differential equations analysis libraryGoogle Scholar
  12. 12.
    Becker R, Rannacher R (1995) Weighted a posteriori error control in FE methods. In: Bock eaHG (ed) ENUMATH’97. World Sci. Publ., SingaporeGoogle Scholar
  13. 13.
    Becker R, Rannacher R (2001) An optimal control approach to error control and mesh adaptation in finite element methods. In: Iserles A (ed) Acta Numerica 2001. Cambridge University Press, Cambridge, pp 1–102Google Scholar
  14. 14.
    Belletini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15:201–224MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Blum H, Suttmeier F-T (1999) An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37(2):65–77MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Blum H, Suttmeier F-T (2000) Weighted error estimates for finite element solutions of variational inequalities. Computing 65(2):119–134MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bonnet A, David G (2001) Cracktip is a global Mumford–Shah minimizer. Asterisque no. 274Google Scholar
  18. 18.
    Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Borden MJ, Hughes TJ, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9:411–430MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bourdin B, Francfort G, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):1–148MathSciNetzbMATHGoogle Scholar
  23. 23.
    Bourdin B, Chukwudozie C, Yoshioka K (2012) A variational approach to the numerical simulation of hydraulic fracturing. SPE Journal, conference paper 159154-MSGoogle Scholar
  24. 24.
    Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Braides A (1998) Approximation of free-discontinuity problems. Springer, BerlinzbMATHGoogle Scholar
  26. 26.
    Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980–1012MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Burke S, Ortner C, Süli E (2013) An adaptive finite element approximation of a generalized Ambrosio–Tortorelli functional. M3AS 23(9):1663–1697MathSciNetzbMATHGoogle Scholar
  28. 28.
    dal Maso G, Francfort GA, Toader R (2005) Quasistatic crack growth in nonlinear elasticity. Arch Ration Mech Anal 176:165–225MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. In: Iserles A (ed) Acta Numerica 1995. Cambridge University Press, Cambridge, pp 105–158Google Scholar
  30. 30.
    Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gerasimov T, Lorenzis LD (2015) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2015.12.017
  32. 32.
    Giles M, Süli E (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. In: Iserles A (ed) Acta Numerica 2002. Cambridge University Press, London, pp 145–236CrossRefGoogle Scholar
  33. 33.
    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198CrossRefGoogle Scholar
  34. 34.
    Großmann C, Roos H-G (2005) Numerische Behandlung partieller Differentialgleichungen. Teubner-Studienbücher Mathematik; Lehrbuch Mathematik. Teubner, Wiesbaden, 3, völlig überarb. und erw. aufl. edition, 2005Google Scholar
  35. 35.
    Heister T, Wheeler MF, Wick T (2015) A primal–dual active set method and predictor–corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495MathSciNetCrossRefGoogle Scholar
  36. 36.
    Hintermüller M, Hoppe R, Löbhard C (2014) Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim Calc Var 20:524–546MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hoitinga W, van Brummelen E (2011) Goal-oriented adaptive methods for a Boltzmann-type equation. In: AIP conference proceedings, vol 1333. American Institute of Physics, p 81–86Google Scholar
  38. 38.
    Kikuchi N, Oden J (1988) Contact problems in elasticity. Studies in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiaCrossRefzbMATHGoogle Scholar
  39. 39.
    Kuru G, Verhoosel C, van der Zee K, van Brummelen E (2014) Goal-adaptive isogeometric analysis with hierarchical splines. Comput Methods Appl Mech Eng 270:270–292MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kuzmin D, Korotov S (2010) Goal-oriented a posteriori error estimates for transport problems. Math Comput Simul 80(8):1674–1683MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lee S, Mikelic A, Wheeler M, Wick T (2016) Phase-field modeling of proppant-filled fractures in a poroelastic medium. ICES-report 16-03. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2016.02.008
  42. 42.
    Mesgarnejad A, Bourdin B, Khonsari M (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437MathSciNetCrossRefGoogle Scholar
  43. 43.
    Meyer C, Rademacher A, Wollner W (2015) Adaptive optimal control of the obstacle problem. SIAM J Sci Comput 37(2):A918–A945MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Mikelić A, Wheeler MF, Wick T (2015a) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul 13(1):367–398MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mikelić A, Wheeler MF, Wick T (2015b) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci 19(6):1171–1195MathSciNetCrossRefGoogle Scholar
  48. 48.
    Mikelić A, Wheeler MF, Wick T (2015c) A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28(5):1371–1399MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Oden J, Prudhomme S (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176:313–331MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Peraire J, Patera A (1998) Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In: Ladeveze P, Oden J (eds) Advances in adaptive computational methods in mechanics. Elsevier, Amsterdam, pp 199–215CrossRefGoogle Scholar
  51. 51.
    Rannacher R, Suttmeier F-T (1997) A feed-back approach to error control in finite element methods: application to linear elasticity. Computational Mechanics 19(5):434–446MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Rannacher R, Suttmeier F-T (1998) A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Computational Mechanics 21(2):123–133MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Rannacher R, Suttmeier F-T (1999) A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 176(1–4):333–361MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Rannacher R, Suttmeier F-T (2000) Error estimation and adaptive mesh design for FE models in elasto-plasticity. In: Stein E (ed) Error-Controlled Adaptive FEMs in Solid Mechanics. Wiley, ChichesterGoogle Scholar
  55. 55.
    Rice J (1968) Mathematical analysis in the mechanics of fracture, pages 191–311. Academic Press, New York, chapter 3 of fracture: an advanced treatise editionGoogle Scholar
  56. 56.
    Richter T (2012) Goal-oriented error estimation for fluid–structure interaction problems. Comput Methods Appl Mech Eng 223–224:38–42MathSciNetzbMATHGoogle Scholar
  57. 57.
    Richter T, Wick T (2015) Variational localizations of the dual weighted residual estimator. J Comput Appl Math 279:192–208MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Rueter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 195(46):251–278MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Rüter M, Gerasimov T, Stein E (2013) Goal-oriented explicit residual-type error estimates in XFEM. Comput Mech 52(2):361–376MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Schroeder A, Rademacher A (2011) Goal-oriented error control in adaptive mixed FEM for Signorini’s problem. Comput Methods Appl Mech Eng 200(1–4):345–355CrossRefGoogle Scholar
  62. 62.
    Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond A 187:229–260MathSciNetCrossRefGoogle Scholar
  63. 63.
    Sneddon IN, Lowengrub M (1969) Crack problems in the classical theory of elasticity. SIAM series in applied mathematics. Wiley, PhiladelphiazbMATHGoogle Scholar
  64. 64.
    Suttmeier F (2008) Numerical solution of variational inequalities by adaptive finite elements. Vieweg+Teubne, WiesbadenGoogle Scholar
  65. 65.
    Suttmeier F-T (2001) General approach for a posteriori error estimates for finite element solutions of variational inequalities. Comput Mech 27(4):317–323MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Tran D, Settari AT, Nghiem L (2013) Predicting growth and decay of hydraulic-fracture witdh in porous media subjected to isothermal and nonisothermal flow. SPE J 18(4):781–794CrossRefGoogle Scholar
  67. 67.
    Wheeler M, Wick T, Wollner W (2014) An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput Methods Appl Mech Eng 271:69–85MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Wick T (2015) Dual-weighted residual adaptivity for phase-field fracture propagation. PAMM 15(1):619–620CrossRefGoogle Scholar
  69. 69.
    Wriggers P (2006) Computational contact mechanics. Springer, BerlinCrossRefzbMATHGoogle Scholar
  70. 70.
    Zee K, Brummelen E, Akkerman I, Borst R (2011) Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints. Comput Methods Appl Mech Eng 200:2738–2757Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  2. 2.Fakultät für Mathematik, Lehrstuhl M17Technische Universität MünchenGarching bei MünchenGermany

Personalised recommendations