Computational Mechanics

, Volume 57, Issue 2, pp 257–276 | Cite as

Regularization of first order computational homogenization for multiscale analysis of masonry structures

  • Massimo Petracca
  • Luca Pelà
  • Riccardo Rossi
  • Sergio Oller
  • Guido Camata
  • Enrico Spacone
Original Paper


This paper investigates the possibility of using classical first order computational homogenization together with a simple regularization procedure based on the fracture energy of the micro-scale-constituents. A generalized geometrical characteristic length takes into account the size of the macro-scale element as well as the size of the RVE (and its constituents). The proposed regularization ensures objectivity of the dissipated energy at the macro-scale, with respect to the size of the FE in both scales and with respect to the size of the RVE. The proposed method is first validated against benchmark examples, and finally applied to the numerical simulation of experimental tests on in-plane loaded shear walls made of periodic masonry.


Computational multiscale homogenization Periodic microstructure Strain localization Characteristic length  Fracture energy regularization Masonry shear wall 



This research has received the financial support from the Graduate School of the University “G. D’ Annunzio” of Chieti-Pescara, from the Italian Department of Civil Protection through the Reluis Project, from the MINECO (Ministerio de Economia y Competitividad of the Spanish Government) and the ERDF (European Regional Development Fund) through the MICROPAR project (Identification of mechanical and strength parameters of structural masonry by experimental methods and numerical micro-modelling, ref num. BIA2012-32234) and from the Excellence Programme for Knowledge Generation by MINECO, through the EACY project (Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. MAT2013-48624-C2-1-P).

S. Oller acknowledges the support of the European Research Council under the Advanced Grant: ERC-2012-AdG 320815 COMP-DES-MAT “Advanced tools for computational design of engineering materials”.


  1. 1.
    Addessi D, Sacco E (2014) A kinematic enriched plane state formulation for the analysis of masonry panels. Eur J Mech A Solids 44:188–200CrossRefGoogle Scholar
  2. 2.
    Addessi D, Sacco E, Paolone A (2010) Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur J Mech A Solids 29(4):724–737CrossRefGoogle Scholar
  3. 3.
    Badillo HA (2012) Numerical modelling based on the multiscale homogenization theory. application in composite materials and structures. PhD thesis, Universitat Politécnica de Catalunya BarcelonaTechGoogle Scholar
  4. 4.
    Bažant Z, Oh B (1983) Crack Band Theory for Fracture of Concrete. Bordas-Dunod,
  5. 5.
    Belytschko T, Loehnert S, Song JH (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73(6):869–894CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Benedetti L, Cervera M, Chiumenti M (2015) Stress-accurate mixed fem for soil failure under shallow foundations involving strain localization in plasticity. Comput Geotech 64:32–47CrossRefGoogle Scholar
  7. 7.
    Bosco E, Kouznetsova V, Geers M (2015) Multi-scale computational homogenization-localization for propagating discontinuities using x-fem. Int J Numer Methods Eng 102(3–4):496–527CrossRefMathSciNetGoogle Scholar
  8. 8.
    Car E, Zalamea F, Oller S, Miquel J, Oñate E (2002) Numerical simulation of fiber reinforced composite materials–two procedures. Int J Solids Struct 39(7):1967–1986CrossRefzbMATHGoogle Scholar
  9. 9.
    Cervera M, Chiumenti M (2006) Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput Methods Appl Mech Eng 196(1):304–320CrossRefzbMATHGoogle Scholar
  10. 10.
    Cervera M, Chiumenti M, Codina R (2010a) Mixed stabilized finite element methods in nonlinear solid mechanics. Part ii: strain localization. Comput Methods Appl Mech Eng 199(37):2571–2589CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Cervera M, Pelà L, Clemente R, Roca P (2010b) A crack-tracking technique for localized damage in quasi-brittle materials. Eng Fract Mech 77(13):2431–2450CrossRefGoogle Scholar
  12. 12.
    Coenen E, Kouznetsova V, Geers M (2012) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90(1):1–21. doi: 10.1002/nme.3298 CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297CrossRefzbMATHGoogle Scholar
  14. 14.
    Dadvand P, Rossi R, Gil M, Martorell X, Cotela J, Juanpere E, Idelsohn SR, Oñate E (2013) Migration of a generic multi-physics framework to hpc environments. Comput Fluids 80:301–309CrossRefzbMATHGoogle Scholar
  15. 15.
    De Bellis ML (2009) A cosserat based multi-scale technique for masonry structures. In: Phd., thesisGoogle Scholar
  16. 16.
    De Bellis ML, Addessi D (2011) A cosserat based multi-scale model for masonry structures. Int J Multiscale Comput Eng 9(5):543–563Google Scholar
  17. 17.
    Geers M, Kouznetsova VG, Brekelmans WAM (2003) Multiscale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng 1(4): 371–386Google Scholar
  18. 18.
    Hernández JA, Oliver J, Huespe AE, Caicedo M (2012) High-performance model reduction procedures in multiscale simulations. Monograph CIMNE, BarcelonaGoogle Scholar
  19. 19.
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRefGoogle Scholar
  20. 20.
    Hughes TJ, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method-a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1):3–24CrossRefzbMATHGoogle Scholar
  21. 21.
    Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260CrossRefzbMATHGoogle Scholar
  22. 22.
    Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550 advances in computational plasticityCrossRefzbMATHGoogle Scholar
  23. 23.
    Lloberas-Valls O, Rixen D, Simone A, Sluys L (2011) Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput Methods Appl Mech Eng 200(13):1577–1590CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668CrossRefGoogle Scholar
  26. 26.
    Lourenco PB (1996) Computational strategies for masonry structures. PhD thesis, TU Delft, Delft University of TechnologyGoogle Scholar
  27. 27.
    Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326CrossRefGoogle Scholar
  28. 28.
    Mandel J (1971) Plasticité classique et viscoplasticité. Springer, New YorkGoogle Scholar
  29. 29.
    Massart T, Peerlings R, Geers M (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059CrossRefzbMATHGoogle Scholar
  30. 30.
    Massart TJ (2003) Multi-scale modeling of damage in masonry structures. PhD thesisGoogle Scholar
  31. 31.
    Melendo A, Coll A, Pasenau M, Escolano E, Monros A (2015) Accessed Nov 2015
  32. 32.
    Mercatoris B, Massart T (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85(9):1177–1206CrossRefzbMATHGoogle Scholar
  33. 33.
    Mercatoris B, Bouillard P, Massart T (2009) Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng Fract Mech 76(4):479–499CrossRefGoogle Scholar
  34. 34.
    Neto EADS, Feijóo RA (2006) Variational foundations of multi-scale constitutive models of solid: Small and large strain kinematical formulation. LNCC Research and Development Report (16)Google Scholar
  35. 35.
    Nguyen VP, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J Multiscale Modell 3(04):229–270CrossRefMathSciNetGoogle Scholar
  36. 36.
    Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Methods Eng 28(2):461–474CrossRefzbMATHGoogle Scholar
  37. 37.
    Oliver J, Caicedo M, Roubin E, Hernández J, Huespe A (2014a) Multi-scale (fe2) analysis of material failure in cement/aggregate-type composite structures. Comput Modell Concr Struct 1:39CrossRefGoogle Scholar
  38. 38.
    Oliver J, Dias I, Huespe AE (2014b) Crack-path field and strain-injection techniques in computational modeling of propagating material failure. Comput Methods Appl Mech Eng 274:289–348CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Oliver Olivella X, Caicedo Silva MA, Roubin E, Huespe AE et al (2014) Continuum approach to computational multi-scale modeling of fracture. Key Eng Mater 627:349–352CrossRefGoogle Scholar
  40. 40.
    Oller S (2001) Fractura Mecánica: Un Enfoque Global. Ediciones CIMNE y UPCGoogle Scholar
  41. 41.
    Oller S, Miquel Canet J, Zalamea F (2005) Composite material behavior using a homogenization double scale method. J Eng Mech 131(1):65–79CrossRefGoogle Scholar
  42. 42.
    Ortolano JM, Hernández JA, Oliver J (2013) A comparative study on homogenization strategies for multi-scale analysis of materials, vol 135. Monograph CIMNE, BarcelonaGoogle Scholar
  43. 43.
    Otero F, Martínez X, Oller S, Salomón O (2012) Study and prediction of the mechanical performance of a nanotube-reinforced composite. Compos Struct 94:2920–2930CrossRefGoogle Scholar
  44. 44.
    Otero F, Oller S, Martinez X, Salomón O (2015) Numerical homogenization for composite materials analysis. comparison with other micro mechanical formulations. Compos Struct 122:405–416CrossRefGoogle Scholar
  45. 45.
    Pelà L, Cervera M, Roca P (2011) Continuum damage model for orthotropic materials: application to masonry. Comput Methods Appl Mech Eng 200(9):917–930CrossRefzbMATHGoogle Scholar
  46. 46.
    Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967CrossRefGoogle Scholar
  47. 47.
    Quinteros RD, Oller S, Nallim LG (2012) Nonlinear homogenization techniques to solve masonry structures problems. Compos Struct 94(2):724–730CrossRefGoogle Scholar
  48. 48.
    Raijmakers T, Vermeltfoort A (1992) Deformation controlled tests in masonry shear walls: report B-92-1156.
  49. 49.
    Rots JG (1988) Computational modeling of concrete fracture. PhD thesis, Technische Hogeschool DelftGoogle Scholar
  50. 50.
    Scott MH, Fenves GL (2003) A krylov subspace accelerated newton algorithm. In: Proceedings, ASCE structures congressGoogle Scholar
  51. 51.
    Simo JC, Rifai M (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Trovalusci P, Masiani R (2003) Non-linear micropolar and classical continua for anisotropic discontinuous materials. Int J Solids Struct 40(5):1281–1297CrossRefzbMATHGoogle Scholar
  53. 53.
    Wu JY, Li J, Faria R (2006) An energy release rate-based plastic-damage model for concrete. Int J Solids Struct 43(3):583–612CrossRefzbMATHGoogle Scholar
  54. 54.
    Zucchini A, Lourenço P (2002) A micro-mechanical model for the homogenisation of masonry. Int J Solids Struct 39(12):3233–3255CrossRefzbMATHGoogle Scholar
  55. 55.
    Zucchini A, Lourenço PB (2009) A micro-mechanical homogenisation model for masonry: application to shear walls. Int J Solids Struct 46(3):871–886CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CIMNE - Centre Internacional de Metodes Numerics en EnginyeriaTechnical University of Catalonia (UPC)BarcelonaSpain
  2. 2.Department of EngineeringUniversity “G.d’Annunzio” of Chieti and PescaraPescaraItaly

Personalised recommendations