Skip to main content
Log in

A phase-field model for ductile fracture at finite strains and its experimental verification

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19(1):3–52

    Article  Google Scholar 

  2. Trädegard A, Nilsson F, Östlund S (1998) FEM-remeshing technique applied to crack growth problems. Comput Methods Appl Mech Eng 160:115–131

    Article  MATH  Google Scholar 

  3. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  4. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  5. Lemaitre J (1985) A Continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  6. Lemaitre J (1996) A course on damage mechanics. Springer, New York

    Book  MATH  Google Scholar 

  7. Bazant ZP, Pijaudier-Cabot G (1988) Non-local continuum damage. Localization, instability and convergence. J Appl Mech 55:287–294

    Article  MATH  Google Scholar 

  8. Peerlings RHJ, De Borst R, Brekelmans WAM, De Vree JHP, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech 15A(6):937–953

    Google Scholar 

  9. Enakoutsa K, Leblond JB, Perrin G (2007) Numerical implementation and assessment of a phenomenological non-local model of ductile rupture. Comput Methods Appl Mech Eng 196(13–16):1946–1957

    Article  MATH  Google Scholar 

  10. Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur J Mech 22A:779–792

    Article  Google Scholar 

  11. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  12. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44(9):1267–1282

    Article  MATH  Google Scholar 

  13. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  MATH  Google Scholar 

  14. Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388

    Article  MathSciNet  MATH  Google Scholar 

  15. Scheider I, Brocks W (2003) Simulation of cup-cone fracture using the cohesive model. Eng Fract Mech 70(14):1943–1961

    Article  Google Scholar 

  16. Seabra MRR, Sustarić P, Cesar de Sa JMA, Rodić T (2013) Damage driven crack initiation and propagation in ductile metals using XFEM. Comput Mech 52:161–179

    Article  MathSciNet  MATH  Google Scholar 

  17. Broumand P, Khoei AR (2013) The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model. Eng Fract Mech 112–113:97–125

    Article  Google Scholar 

  18. Crété JP, Longère P, Cadou JM (2014) Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM. Comput Methods Appl Mech Eng 275:204–233

    Article  MATH  Google Scholar 

  19. Francfort GA, Marigo JJ (1998) Revisiting brittle fractures as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MathSciNet  MATH  Google Scholar 

  21. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  MathSciNet  MATH  Google Scholar 

  22. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  23. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634

    Article  Google Scholar 

  24. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  25. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MathSciNet  MATH  Google Scholar 

  26. Ambati M, Gerasimov T, De Lorenzis L (2014) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  Google Scholar 

  27. Duda FP, Ciarbonetti A, Sanchez PJ, Huespe AE (2014) A phase-field/gradient damage model for brittle fracture in elastic-plastic solids. Int J Plast 65:269–296

    Article  Google Scholar 

  28. Borden MJ (2012) Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture. PhD dissertation, The University of Texas at Austin

  29. Miehe C, Hofacker M, Schänzel L, Aldakheel F (2014) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Methods Appl Mech Eng 294:486–522

  30. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

  31. Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214:575–615

    Article  MathSciNet  MATH  Google Scholar 

  32. Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: variational formulation and main properties. Mech Mater 80:351–367

    Article  Google Scholar 

  33. Wick D, Wick T, Hellmig RJ, Christ HJ (2015) Numerical simulations of crack propagation in screws with phase-field modeling. RICAM-Report No. 2015–11

  34. Miehe C, Schänzel LM (2014) Phase field modeling of fracture in rubbery polymers: part I: finite elasticity coupled with brittle failure. J Mech Phys Solids 65:93–113

    Article  MathSciNet  Google Scholar 

  35. Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–925

    Article  MathSciNet  Google Scholar 

  36. Clayton JD, Knap J (2014) A geometrically nonlinear phase field theory of brittle fracture. Int J Fract 189:139–148

    Article  Google Scholar 

  37. Mesgarnejad A, Bourdin B, Khonsari MM (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437

    Article  MathSciNet  Google Scholar 

  38. Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech 182:31–111

    Article  MATH  Google Scholar 

  39. Naghdi PM (1990) A critical review of the state of finite plasticity. J Appl Math Phys 41:315–394

    Article  MathSciNet  MATH  Google Scholar 

  40. Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part I: continuum formulation. Comput Methods Appl Mech Eng 66:199–219

    Article  MathSciNet  MATH  Google Scholar 

  41. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  42. Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, Chichester

    MATH  Google Scholar 

  43. Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226

    Google Scholar 

  44. Simo JC (1988) A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput Methods Appl Mech Eng 68:1–31

    Article  MATH  Google Scholar 

  45. Guo J, Zhao S, Murakami R, Zang S (2013) Experimental and numerical investigation for ductile fracture of Al-alloy 5052 using modified Rousselier model. Comput Mater Sci 71:115–123

    Article  Google Scholar 

  46. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  47. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449

    Article  MathSciNet  MATH  Google Scholar 

  48. Hughes TJR (1980) Generalization of selective integration procedure to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418

    Article  MATH  Google Scholar 

  49. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    Google Scholar 

  50. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume contraint in finite deformation elastoplasticity. Comput Methods Appl Mech Eng 51:177–208

    Article  MathSciNet  MATH  Google Scholar 

  51. de Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33:3277–3296

    Article  MATH  Google Scholar 

  52. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity based on higher-order NURBS elements. Comput Methods Appl Mech Eng 197:2732–2762

    Article  MATH  Google Scholar 

  53. Elguedj T, Hughes TJR (2014) Isogeometric analysis of nearly incompressible large strain plasticity. Comput Methods Appl Mech Eng 268:388–416

    Article  MathSciNet  MATH  Google Scholar 

  54. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Comput Methods Appl Mech Eng 32:157–169

    Google Scholar 

  55. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Article  Google Scholar 

  56. Wierzbicki T, Bao Y, Lee YW, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743

    Article  Google Scholar 

  57. Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Methods Eng 66(4):661–688

    Article  MATH  Google Scholar 

  58. Xue L (2007) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44:5163–5181

    Article  MATH  Google Scholar 

  59. Boyce BL (2014) The Sandia fracture challenge: blind round robin predictions of ductile tearing. Int J Fract 186:5–68

    Article  Google Scholar 

  60. Guo J (2013) An experimental and numerical investigation on damage evolution and ductile fracture mechanism of aluminum alloy. PhD dissertation, The University of Tokushima

  61. Gerasimov T, De Lorenzis L (subm.) A line-search assisted monolithic approach for phase-field computing of brittle fracture

Download references

Acknowledgments

This research was funded by the European Research Council, ERC Starting Researcher Grant INTERFACES, Grant Agreement No. 279439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura De Lorenzis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambati, M., Kruse, R. & De Lorenzis, L. A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57, 149–167 (2016). https://doi.org/10.1007/s00466-015-1225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1225-3

Keywords

Navigation