Skip to main content
Log in

Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present parallel implementations of Newton–Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324

    Google Scholar 

  2. Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall Mater 41:2611–2624

    Article  Google Scholar 

  3. Lebensohn RA, Tomé CN, Castaneda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87:4287–4322

    Article  Google Scholar 

  4. Knezevic M, Beyerlein IJ, Nizolek T, Mara NA, Pollock TM (2013) Anomalous basal slip activity in zirconium under high-strain deformation. Mater Res Lett 1:133–140

    Article  Google Scholar 

  5. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211

    Article  Google Scholar 

  6. Kalidindi SR, Bronkhorst CA, Anand L (1992) Crystallographic texture evolution in bulk deformation processing of FCC metals. J Mech Phys Solids 40:537–569

    Article  Google Scholar 

  7. Knezevic M, Drach B, Ardeljan M, Beyerlein IJ (2014) Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput Methods Appl Mech Eng 277:239–259

    Article  Google Scholar 

  8. Jahedi M, Ardeljan M, Beyerlein IJ, Paydar MH, Knezevic M (2015) Enhancement of orientation gradients during simple shear deformation by application of simple compression. J Appl Phys 117:214309

    Article  Google Scholar 

  9. Ardeljan M, Knezevic M, Nizolek T, Beyerlein IJ, Mara NA, Pollock TM (2015) A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int J Plasticity 74:35–57

    Article  Google Scholar 

  10. Ardeljan M, McCabe RJ, Beyerlein IJ, Knezevic M (2015) Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput Methods Appl Mech Eng 295:396–413

  11. Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69

    Article  Google Scholar 

  12. Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53

    Article  Google Scholar 

  13. Beyerlein IJ, Tomé CN (2007) Modeling transients in the mechanical response of copper due to strain path changes. Int J Plast 23:640–664

    Article  MATH  Google Scholar 

  14. Tomé C, Necker C, Lebensohn R (2002) Mechanical anisotropy and grain interaction in recrystallized aluminum. Metall Mater Trans A 33:2635–2648

    Article  Google Scholar 

  15. Zecevic M, Knezevic M (2015) A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to Al6022-T4. Int J Plast 72:200–217

    Article  Google Scholar 

  16. Peeters B, Seefeldt M, Van Houtte P, Aernoudt E (2001) Taylor ambiguity in BCC polycrystals: a non-problem if substructural anisotropy is considered. Scripta Mater 45:1349–1356

    Article  Google Scholar 

  17. Fast T, Knezevic M, Kalidindi SR (2008) Application of microstructure sensitive design to structural components produced from hexagonal polycrystalline metals. Comput Mater Sci 43:374–383

    Article  Google Scholar 

  18. Wu X, Proust G, Knezevic M, Kalidindi SR (2007) Elastic-plastic property closures for hexagonal close-packed polycrystalline metals using first-order bounding theories. Acta Mater 55:2729–2737

    Article  Google Scholar 

  19. Fromm BS, Adams BL, Ahmadi S, Knezevic M (2009) Grain size and orientation distributions: application to yielding of \(\alpha \)-titanium. Acta Mater 57:2339–2348

    Article  Google Scholar 

  20. Proust G, Tomé CN, Kaschner GC (2007) Modeling texture, twinning and hardening evolution during deformation of hexagonal materials. Acta Mater 55:2137–2148

    Article  Google Scholar 

  21. Knezevic M, Nizolek T, Ardeljan M, Beyerlein IJ, Mara NA, Pollock TM (2014) Texture evolution in two-phase Zr/Nb lamellar composites during accumulative roll bonding. Int J Plast 57:16–28

    Article  Google Scholar 

  22. Knezevic M, Zecevic M, Beyerlein IJ, Bingert JF, McCabe RJ (2015) Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr. Acta Mater 88:55–73

    Article  Google Scholar 

  23. Knezevic M, Capolungo L, Tomé CN, Lebensohn RA, Alexander DJ, Mihaila B, McCabe RJ (2012) Anisotropic stress-strain response and microstructure evolution of textured \(\alpha \)-uranium. Acta Mater 60:702–715

    Article  Google Scholar 

  24. Knezevic M, McCabe RJ, Tomé CN, Lebensohn RA, Chen SR, Cady CM, Gray Iii GT, Mihaila B (2013) Modeling mechanical response and texture evolution of \(\alpha \)-uranium as a function of strain rate and temperature using polycrystal plasticity. Int J Plast 43:70–84

    Article  Google Scholar 

  25. Knezevic M, Beyerlein IJ, Lovato ML, Tomé CN, Richards AW, McCabe RJ (2014) A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: application to tantalum-tungsten alloys. Int J Plast 62:93–104

    Article  Google Scholar 

  26. Bhattacharyya A, Knezevic M, Abouaf M (2015) Characterization of crystallographic texture and intra-grain morphology in cross-rolled tantalum. Metall Mater Trans A 46:1085–1096

    Article  Google Scholar 

  27. Ardeljan M, Knezevic M, Nizolek T, Beyerlein IJ, Zheng SJ, Carpenter JS, McCabe RJ, Mara NA, Pollock TM (2014) A multi-scale model for texture development in Zr/Nb nanolayered composites processed by accumulative roll bonding. IOP Conf Ser Mater Sci Eng 63:012170

    Article  Google Scholar 

  28. Zecevic M, Knezevic M, Beyerlein IJ, Tomé CN (2015) An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: application to strain path changes in HCP metals. Mater Sci Eng A 638:262–274

    Article  Google Scholar 

  29. Knezevic M, Beyerlein IJ, Brown DW, Sisneros TA, Tomé CN (2013) A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: application to beryllium. Int J Plast 49:185–198

    Article  Google Scholar 

  30. Oppedal AL, El Kadiri H, Tomé CN, Kaschner GC, Vogel SC, Baird JC, Horstemeyer MF (2012) Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int J Plast 30–31:41–61

    Article  Google Scholar 

  31. Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR (2010) Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater 58:6230–6242

    Article  Google Scholar 

  32. Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: an uncommon tension-compression asymmetry. Acta Mater 86:254–268

    Article  Google Scholar 

  33. Lentz M, Klaus M, Wagner M, Fahrenson C, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) Effect of age hardening on the deformation behavior of an Mg-Y-Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling. Mater Sci Eng A 628:396–409

    Article  Google Scholar 

  34. Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  MATH  Google Scholar 

  35. Von Mises R (1928) Mechanik der plastischen formanderung von kristallen. Math Mech 8:161–185

    MATH  Google Scholar 

  36. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194

    Article  MATH  Google Scholar 

  37. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 193. pp 281–297

  38. Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate dependent polycrystals. Acta Metall Mater 33:923–953

    Article  Google Scholar 

  39. Beaudoin AJ, Mathur KK, Dawson PR, Johnson GC (1993) Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models. Int J Plast 9:833–860

    Article  MATH  Google Scholar 

  40. Knezevic M, McCabe RJ, Lebensohn RA, Tomé CN, Liu C, Lovato ML, Mihaila B (2013) Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals. J Mech Phys Solids 61:2034–2046

    Article  Google Scholar 

  41. Knezevic M, McCabe RJ, Lebensohn RA, Tomé CN, Mihaila B (2012) Finite element implementation of a self-consistent polycrystal plasticity model: application to \(\alpha \)-uranium. In: Proceedings of the materials properties, characterization, and modeling TMS, vol 2 . The Minerals, Metals & Materials Society, pp 789-796

  42. Knezevic M, Lebensohn RA, Cazacu O, Revil-Baudard B, Proust GNL, Vogel SC, Nixon ME (2013) Modeling bending of \(\alpha \)-titanium with embedded polycrystal plasticity in implicit finite elements. Mater Sci Eng A 564:116–126

    Article  Google Scholar 

  43. Segurado J, Lebensohn RA, Llorca J, Tomé CN (2012) Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int J Plast 28:124–140

    Article  Google Scholar 

  44. Balasubramanian S, Anand L (1996) Single crystal and polycrystal elasto-viscoplasticity: application to earing in cup drawing of F.C.C. materials. Comput Mech 17:209–225

    Article  Google Scholar 

  45. Maudlin PJ, Schiferl SK (1996) Computational anisotropic plasticity for high-rate forming applications. Comput Methods Appl Mech Eng 131:1–30

    Article  MATH  Google Scholar 

  46. Beaudoin AJ, Dawson PR, Mathur KK, Kocks UF, Korzekwa DA (1994) Application of polycrystal plasticity to sheet forming. Comput Methods Appl Mech Eng 117:49–70

    Article  MATH  Google Scholar 

  47. Kumar A, Dawson PR (1995) Polycrystal plasticity modeling of bulk forming with finite elements over orientation space. Comput Mech 17:10–25

    Article  MATH  Google Scholar 

  48. Knezevic M, Jahedi M, Korkolis YP, Beyerlein IJ (2014) Material-based design of the extrusion of bimetallic tubes. Comput Mater Sci 95:63–73

    Article  Google Scholar 

  49. Zecevic M, McCabe RJ, Knezevic M (2015) Spectral database solutions to elasto-viscoplasticity within finite elements: application to a cobalt-based FCC superalloy. Int J Plast 70:151–165

    Article  Google Scholar 

  50. Jahedi M, Knezevic M, Paydar M (2015) High-pressure double torsion as a severe plastic deformation process: experimental procedure and finite element modeling. J Mate Eng Perform 24:1471–1482

    Article  Google Scholar 

  51. Jahedi M, Paydar MH, Zheng S, Beyerlein IJ, Knezevic M (2014) Texture evolution and enhanced grain refinement under high-pressure-double-torsion. Mater Sci Eng A 611:29–36

    Article  Google Scholar 

  52. Jahedi M, Paydar MH, Knezevic M (2015) Enhanced microstructural homogeneity in metal-matrix composites developed under high-pressure-double-torsion. Mater Charact 104:92–100

    Article  Google Scholar 

  53. Barton N, Bernier J, Knap J, Sunwoo A, Cerreta E, Turner T (2011) A call to arms for task parallelism in multi-scale materials modeling. Int J Numer Methods Eng 86:744–764

    Article  MATH  Google Scholar 

  54. Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45:4–25

    Article  Google Scholar 

  55. Knezevic M, Savage DJ (2014) A high-performance computational framework for fast crystal plasticity simulations. Comput Mater Sci 83:101–106

    Article  Google Scholar 

  56. Mellbin Y, Hallberg H, Ristinmaa M (2014) Accelerating crystal plasticity simulations using GPU multiprocessors. Int J Numer Methods Eng 100:111–135

    Article  MathSciNet  Google Scholar 

  57. Knezevic M, Savage DJ, Landry NW (2014) Towards computationally tractable simulations of metal forming processes with evolving microstructures. In: ASME 2014 international manufacturing science and engineering conference collocated with the JSME 2014 international conference on materials and processing and the 42nd north american manufacturing research conference. American Society of Mechanical Engineers, p V002T002A070

  58. Li DS, Garmestani H, Schoenfeld S (2003) Evolution of crystal orientation distribution coefficients during plastic deformation. Scripta Mater 49:867–872

    Article  Google Scholar 

  59. Shaffer JB, Knezevic M, Kalidindi SR (2010) Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: applications to process design for targeted performance. Int J Plast 26:1183–1194

    Article  MATH  Google Scholar 

  60. Knezevic M, Kalidindi SR, Mishra RK (2008) Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution. Int J Plast 24:327–342

    Article  Google Scholar 

  61. Kalidindi SR, Duvvuru HK, Knezevic M (2006) Spectral calibration of crystal plasticity models. Acta Mater 54:1795–1804

    Article  Google Scholar 

  62. Knezevic M, Kalidindi SR (2007) Fast computation of first-order elastic-plastic closures for polycrystalline cubic-orthorhombic microstructures. Comput Mater Sci 39:643–648

    Article  Google Scholar 

  63. Knezevic M, Landry NW (2015) Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics. Mech Mater 88:73–86

    Article  Google Scholar 

  64. Duvvuru HK, Knezevic M, Mishra RK, Kalidindi SR (2007) Application of microstructure sensitive design to FCC polycrystals. Mater Sci Forum 546:675–680

    Article  Google Scholar 

  65. Knezevic M, Al-Harbi HF, Kalidindi SR (2009) Crystal plasticity simulations using discrete Fourier transforms. Acta Mater 57:1777–1784

    Article  Google Scholar 

  66. Al-Harbi HF, Knezevic M, Kalidindi SR (2010) Spectral approaches for the fast computation of yield surfaces and first-order plastic property closures for polycrystalline materials with cubic-triclinic textures. Comput Mater Contin (CMC) 15:153–172

    Google Scholar 

  67. Knezevic M, Kalidindi SR, Fullwood D (2008) Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals. Int J Plast 24:1264–1276

    Article  MATH  Google Scholar 

  68. Kalidindi SR, Knezevic M, Niezgoda S, Shaffer J (2009) Representation of the orientation distribution function and computation of first-order elastic properties closures using discrete Fourier transforms. Acta Mater 57:3916–3923

    Article  Google Scholar 

  69. Zecevic M, McCabe RJ, Knezevic M (2015) A new implementation of the spectral crystal plasticity framework in implicit finite elements. Mech Mater 84:114–126

    Article  Google Scholar 

  70. Barton NR, Knap J, Arsenlis A, Becker R, Hornung RD, Jefferson DR (2008) Embedded polycrystal plasticity and adaptive sampling. Int J Plast 24:242–266

    Article  Google Scholar 

  71. Barton NR, Bernier JV, Lebensohn RA, Boyce DE (2015) The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput Methods Appl Mech Eng 283:224–242

    Article  Google Scholar 

  72. Chockalingam K, Tonks MR, Hales JD, Gaston DR, Millett PC, Zhang L (2013) Crystal plasticity with Jacobian-Free Newton–Krylov. Comput Mech 51:617–627

    Article  MATH  MathSciNet  Google Scholar 

  73. Yamanaka A, Takaki T, Tomita Y (2012) Simulation of austenite-to-ferrite transformation in deformed austenite by crystal plasticity finite element method and multi-phase-field method. ISIJ Int 52:659–668

    Article  Google Scholar 

  74. Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys 227:5342–5359

    Article  MATH  Google Scholar 

  75. Baker JA, Hirst JD (2011) Molecular dynamics simulations using graphics processing units. Mol Inform 30:498–504

    Article  Google Scholar 

  76. Corrigan A, Camelli FF, Löhner R, Wallin J (2011) Running unstructured gridbased CFD solvers on modern graphics hardware. Int J Numer Methods Fluids 66:221–229

    Article  MATH  Google Scholar 

  77. Mossaiby F, Rossi R, Dadvand P, Idelsohn S (2012) OpenCL-based implementation of an unstructured edge-based finite element convection-diffusion solver on graphics hardware. Int J Numer Methods Eng 89:1635–1651

    Article  MATH  Google Scholar 

  78. Cecka C, Lew AJ, Darve E (2011) Assembly of finite element methods on graphics processors. Int J Numer Methods Eng 85:640–669

    Article  MATH  Google Scholar 

  79. Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2013) Generation of large finiteelement matrices on multiple graphics processors. Int J Numer Methods Eng 94:204–220

    Article  MathSciNet  Google Scholar 

  80. Mihaila B, Knezevic M, Cardenas A (2014) Three orders of magnitude improved efficiency with highperformance spectral crystal plasticity on GPU platforms. Int J Numer Methods Eng 97:785–798

    Article  MathSciNet  Google Scholar 

  81. Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895

    Article  MATH  Google Scholar 

  82. Ardeljan M, Beyerlein IJ, Knezevic M (2014) A dislocation density based crystal plasticity finite element model: application to a two-phase polycrystalline HCP/BCC composites. J Mech Phys Solids 66:16–31

  83. Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences. pp 101–126

  84. Armijo L (1966) Minimization of functions having Lipschitz continuous first partial derivatives. Pac J Math 16:1–3

    Article  MATH  MathSciNet  Google Scholar 

  85. Van Houtte P (1994) Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials. Int J Plast 10:719–748

    Article  MATH  Google Scholar 

  86. Bunge H-J (1993) Texture analysis in materials science., Mathematical methodsCuvillier Verlag, Göttingen

    Google Scholar 

  87. Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Met 74:537–562

    Google Scholar 

  88. Tomé C, Canova GR, Kocks UF, Christodoulou N, Jonas JJ (1984) The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall 32:1637–1653

    Article  Google Scholar 

  89. Sarma G, Zacharia T, Miles D (1998) Using high performance Fortran for parallel programming. Comput Math Appl 35:41–57

    Article  MATH  Google Scholar 

  90. Ruetsch G, Fatica M (2013) CUDA Fortran for scientists and engineers: best practices for efficient CUDA Fortran programming, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  91. 2007–2014 NVIDIA Corporation, CUDA Toolkit Documentation v6.5, http://docs.nvidia.com/cuda/#axzz3MMC3iZGv

  92. CUDA FORTRAN Programming Guide and Reference, The Portland Group, Version 2014, 2014

  93. 2014 Khronos Group. https://www.khronos.org/opencl/

  94. 2011–2014 OpenACC.org. http://www.openacc-standard.org/

  95. Patterson DA, Hennessy JL (1998) Computer organization and design: the hardware/software interface, 2nd edn. Morgan Kaufmann Publishers Inc, San Francisco

    Google Scholar 

  96. Hennessy JL, Patterson DA (2012) Computer architecture: a quantitative approach, 5th edn. Elsevier, Inc., Waltham

    Google Scholar 

  97. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110, NVIDIA Corporation, 2012

  98. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++: the art of scientific computing. Cambridge University Press, Cambridge

  99. Junjie SRL, Sahni S (2011) Strassen’s matrix multiplication on GPUs. Parallel and distributed systems (ICPADS). In: Proceedings of the 2011 IEEE 17th international conference. pp 157–164

  100. Baudin T, Jura J, Penelle R, Pospiech J (1995) Estimation of the minimum grain number for the orientation distribution function calculation from individual orientation measurements on Fe-3% Si and Ti-4Al-6V alloys. J Appl Crystallogr 28:582–589

    Article  Google Scholar 

  101. Pospiech J, Jura J, Gottstein G (1994) Statistical analysis of single grain orientation data generated from model textures. Mater Sci Forum Trans Tech Publ 157:407–412

    Article  Google Scholar 

  102. ABAQUS Version 6.11-2, Dassault Systèmes, Providence, RI, USA (2013)

  103. Beyerlein IJ, Li S, Necker CT, Alexander DJ, Tomé CN (2005) Non-uniform microstructure and texture evolution during equal channel angular extrusion. Philos Mag 85:1359–1394

    Article  Google Scholar 

Download references

Acknowledgments

This work is based upon a project supported by the U.S. National Science Foundation under Grant No. CMMI-1541918. The authors gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Knezevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savage, D.J., Knezevic, M. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware. Comput Mech 56, 677–690 (2015). https://doi.org/10.1007/s00466-015-1194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1194-6

Keywords

Navigation