Skip to main content
Log in

8-Node solid-shell elements selective mass scaling for explicit dynamic analysis of layered thin-walled structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

To overcome the issue of spurious maximum eigenfrequencies leading to small steps in explicit time integration, a recently proposed selective mass scaling technique, specifically conceived for 8-node hexahedral solid-shell elements, is reconsidered for application to layered shells, where several solid-shell elements are used through the thickness of thin-walled structures. In this case, the resulting scaled mass matrix is not perfectly diagonal. However, the introduced coupling is shown to be limited to the nodes belonging to the same fiber through the thickness, so that the additional computational burden is almost negligible and by far compensated by the larger size of the critical time step. The proposed numerical tests show that the adopted mass scaling leads to a critical time step size which is determined by the element in-plane dimensions only, independent of the layers number, with negligible accuracy loss, both in small and large displacement problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abed-Meraim F, Combescure A (2009) An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis. Int J Numer Methods Eng 80(13):1640–1686

    Article  MATH  MathSciNet  Google Scholar 

  2. Abed-Meraim F, T VD, Combescure A (2013) New quadratic solid-shell elements and their evaluation on linear benchmark problems. Computing 95(5):373–394

    Article  MATH  MathSciNet  Google Scholar 

  3. Askes H, Nguyen DCD, Tyas A (2011) Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. Comput Mech 47(6):657–667

    Article  MATH  Google Scholar 

  4. Cocchetti G, Pagani M, Perego U (2013) Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements. Comput Struct 127:39–52

    Article  Google Scholar 

  5. Cocchetti G, Pagani M, Perego U (2015) Selective mass scaling for distorted solid-shell elements in explicit dynamics: optimal scaling factor and stable time step estimate. Int J Numer Methods Eng 101(9):700–731

    Article  MathSciNet  Google Scholar 

  6. Flanagan D, Belytschko T (1984) Eigenvalues and stable time steps for the uniform strain hexaedron and quadilateral. J Appl Mech 51(1):35–40

    Article  MATH  Google Scholar 

  7. Frangi A, Pagani M, Perego U, Borsari R (2010) Directional cohesive elements for the simulation of blade cutting of thin shells. Comput Modeling Eng Sci (CMES) 57(3):205

    MATH  Google Scholar 

  8. Hauptmann R, Schweizerhof K (1998) A systematic development of ‘solid-shell’ element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int J Numer Methods Eng 42(1):49–69

    Article  MATH  Google Scholar 

  9. Hetherington J, Rodriguez-Ferran A, Askes H (2012) A new bipenalty formulation for ensuring time step stability in time domain computational dynamics. Int J Numer Methods Eng 90:269–286

    Article  MATH  MathSciNet  Google Scholar 

  10. Ibrahimbegovic A, Brank B, Courtois P (2001) Stress resultant geometrically exact form of classical shell model and vector-like parametrization of constrained finite rotations. Int J Numer Methods Eng 52:1235–1252

    Article  MATH  Google Scholar 

  11. Macek RW, Aubert BH (1995) A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses. Earthq Eng Struct Dyn 24(10):1315–1331

    Article  Google Scholar 

  12. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  MATH  Google Scholar 

  13. Naceur H, Shiri S, Coutellier D, Batoz JL (2013) On the modeling and design of composite multilayered structures using solid-shell finite element model. Finite Elem Anal Des 70–71:1–14

    Article  Google Scholar 

  14. Olovsson L, Unosson M, Simonsson K (2004) Selective mass scaling for thin walled structures modeled with tri-linear solid elements. Comput Mech 34(2):134–136

    Article  MATH  Google Scholar 

  15. Olovsson L, Simonsson K, Unosson M (2005) Selective mass scaling for explicit finite element analyses. Int J Numer Methods Eng 63(10):1436–1445

    Article  MATH  Google Scholar 

  16. Pagani M, Reese S, Perego U (2014) Computationally efficient explicit nonlinear analyses using reduced integration-based solid-shell finite elements. Comput Methods Appl Mech Eng 268:141–159

    Article  MATH  MathSciNet  Google Scholar 

  17. Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concept: large deformation problems. Int J Numer Methods Eng 85(3):289–329

    Article  MATH  MathSciNet  Google Scholar 

  18. Sokolinsky VS, Shen H, Vaikhanski L, Nutt SR (2003) Experimental and analytical study of nonlinear bending response of sandwich beams. Compos Struct 60:219–229

    Article  Google Scholar 

  19. Tan X, Vu-Quoc L (2005) Efficient and accurate multilayer solid-shell element: non-linear materials at finite strain. Int J 63(15):2124–2170

    MATH  Google Scholar 

  20. Tkachuk A, Bischoff M (2013a) Local and global strategies for optimal selective mass scaling. Comput Mech 53(6):1197–1207

    Article  MathSciNet  Google Scholar 

  21. Tkachuk A, Bischoff M (2013b) Variational methods for selective mass scaling. Comput Mech 52(3):563–570

    Article  MATH  MathSciNet  Google Scholar 

  22. Tkachuk A, Bischoff M (2015) Direct and sparse construction of consistent inverse mass matrices: general variational formulation and application to selective mass scaling. Int J Numer Methods Eng 101(6):435–469

    Article  MathSciNet  Google Scholar 

  23. Zukas JA (2004) Introduction to hydrocodes. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgments

The financial support by Tetra Pak Packaging Solutions is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Ghisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Confalonieri, F., Ghisi, A. & Perego, U. 8-Node solid-shell elements selective mass scaling for explicit dynamic analysis of layered thin-walled structures. Comput Mech 56, 585–599 (2015). https://doi.org/10.1007/s00466-015-1188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1188-4

Keywords

Navigation