Skip to main content
Log in

Various contact approaches for the finite cell method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The finite cell method (FCM) provides a method for the computation of structures which can be described as a mixture of high-order FEM and a special integration technique. The method is one of the novel computational methods and is highly developed within the last decade. One of the major problems of FCM is the description of boundary conditions inside cells as well as in sub-cells. And a completely open problem is the description of contact. Therefore, the motivation of the current work is to develop a set of computational contact mechanics approaches which will be effective for the finite element cell method. Thus, for the FCM method we are developing and testing hereby focusing on the Hertz problem the following algorithms: direct integration in the cell method, allowing the fastest implementation, but suffering from numerical artifacts such as the “stamp effect”; the most efficient scheme concerning approximation properties the cell-surface-to-analytical-surface contact element designed for contact with rigid bodies leading to cell-wisely contact elements; and finally the discrete-cell-to-cell contact approach based on the finite discrete method. All developed methods are carefully verified with the analytical Hertz solution. The cell subdivisions, the order of the shape functions as well as the selection of the classes for shape functions are investigated for all developed contact approaches. This analysis allows to choose the most robust approach depending on the needs of the user such as correct representation of the stresses, or only satisfaction of geometrical non-penetration conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Düster A (2002) High order finite elements for three-dimensional, thin-walled nonlinear continua, Dissertation, Shaker

  2. Düster A, Parzivian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782

    Article  Google Scholar 

  3. Düster A, Rank E (2011) Die Finite Cell Methode—Eine Fictitious Domain Methode mit Finite-Element Ansätzen hoher Ordnung. GAMM Rundbr 2:6–13

  4. Parzivian J, Düster A, Rank E (2007) Finite cell method: h-and p-extension for embedded domain problems in solid mechanics. Comput Mech 41:121–133

    Article  MathSciNet  Google Scholar 

  5. Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52(4):741–762

    Article  Google Scholar 

  6. Šolin P, Segeth K, Doležel I (2004) Higher order finite element methods. Chapman and Hall, Boca Raton

    Google Scholar 

  7. Konyukhov A, Schweizerhof K (2009) Incorporation of contact for higher-order finite elements in covariant form. Comput Methods Appl Mech Eng 198:1213–1223

    Article  MathSciNet  Google Scholar 

  8. Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the \(h\)-, \(p\)-, \(hp\)-, and \(rp\)-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45:513–522

    Article  Google Scholar 

  9. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    Google Scholar 

  10. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MathSciNet  Google Scholar 

  11. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(912):1100–1112

    Article  MathSciNet  Google Scholar 

  12. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  13. Lorenzis L, Wriggers P, Hughes ThJR (2014) Isogeometric contact: a review. GAMM-Mitt 37(1):85–123. doi:10.1002/gamm.201410005

    Article  MathSciNet  Google Scholar 

  14. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis - toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  15. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  Google Scholar 

  16. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    Google Scholar 

  17. Yastrebov VA (2013) Numerical methods in contact mechanics. Wiley, London

    Book  Google Scholar 

  18. Konyukhov A, Schweizerhof K (2013) Computational contact mechanics: geometrically theory for arbitrary shaped bodies. Springer, Heildelberg

    Book  Google Scholar 

  19. Konyukhov A, Schweizerhof K (2005) Covariant description for frictional contact problems. Comput Mech 35(3):190–213

    Article  Google Scholar 

  20. Konyukhov A, Schweizerhof K (2006) A special focus on 2D formulations for contact problems using a covariant description. Int J Numer Methods Eng 66(9):1432–1465

    Article  MathSciNet  Google Scholar 

  21. Konyukhov A, Izi R (2015) Introduction to computational contact mechanics: a geometrical approach. Wiley, Chichester

    Google Scholar 

  22. Schillinger D, Ruess M, Zander N, Bazilevs Yu, Düster A, Rank E (2012) Small and large deformation analysis with the \(p\)- and \(B\)-spline versions of the finite cell method. Computat Mech 50(4):445–478

    Article  Google Scholar 

  23. Piegl L, Tiller W (1996) The NURBS book, 2nd edn. Springer, Berlin

    Google Scholar 

  24. Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197(33):3045–3056

    Article  MathSciNet  Google Scholar 

  25. Konyukhov A, Schweizerhof K (2010) Geometrically exact covariant approach for contact between curves. Comput Methods Appl Mech Eng 199(37):2510–2531

    Article  MathSciNet  Google Scholar 

  26. Wohlmuth B (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38:989–1012

    Article  MathSciNet  Google Scholar 

  27. Hertz H (1881) Über die Berührung fester elastischer Körper. J für die reine und angew Math 92:156–171

    MathSciNet  Google Scholar 

  28. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Gallin LA (1961) Contact problems in the theory of elasticity. Moscow, 1953. In: Russian (English translation by H. Moss, North Carolina State College, Dep. Math., 1961)

  30. Konyukhov A, Schweizerhof K (2015) On some aspects for contact with rigid surfaces: Surface-to-rigid surface and curves-to-rigid surface algorithms. Comput Methods Appl Mech Eng 283:74–105

    Article  MathSciNet  Google Scholar 

  31. Kane C, Repetto EA, Ortiz M, Marsden JE (1999) Finite element analysis of nonsmooth contact. Comput Methods Appl Mech Eng 180(12):1–26

    Article  MathSciNet  Google Scholar 

  32. Harnau M, Konyukhov A, Schweizerhof K (2005) Algorithmic aspects in large deformation contact analysis using “Solid-Shell” elements. Comput Struct 83(21):1804–1823

    Article  Google Scholar 

  33. Wriggers P, Scherf O (1998) Different a posteriori error estimators and indicators for contact problems. Math Comput Model 28:437–447

    Article  MathSciNet  Google Scholar 

  34. Munjiza A (2005) The combined finite-discrete element method. Wiley, Chichester

    Google Scholar 

  35. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31(3):547–572

    Article  Google Scholar 

  36. Durville D (2012) Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput Mech 49(6):687–707

    Article  MathSciNet  Google Scholar 

  37. Wriggers P, Schröder J, Schwarz A (2013) A finite element method for contact using a third medium. Comput Mech 52(4):837–847

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Konyukhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyukhov, A., Lorenz, C. & Schweizerhof, K. Various contact approaches for the finite cell method. Comput Mech 56, 331–351 (2015). https://doi.org/10.1007/s00466-015-1174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1174-x

Keywords

Navigation