Skip to main content
Log in

The shifted penalty method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The method presented here is a variation of the classical penalty one, suited to reduce penetration of the contacting surfaces. The slight but crucial modification concerns the introduction of a shift parameter that moves the minimum point of the constrained potential toward the exact value, without any penalty increase. With respect to the classical augmentation procedures, the solution improvement is embedded within the original penalty contribution. The problem is almost consistently linearized, and the shift is updated before each Newton’s iteration. However, adding few iterations, with respect to the original penalty method, a reduction of the penetration of several orders of magnitude can be achieved. The numerical tests have shown very attractive characteristics and very stable solution paths. This permits to foresee a wide area of applications, not only in contact mechanics, but for any problem, like e.g. incompressible materials, where a penalty contribution is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Zavarise G, De Lorenzis LA (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416

    Article  MATH  Google Scholar 

  2. Luenberger DG, Ye Y (2008) Linear and nonlinear programming, 3rd edn. Springer, New York

    MATH  Google Scholar 

  3. Bertsekas DP (1988) Constrained optimization and Lagrange multiplier methods. Computer science and applied mechanics series. Academic Press, California

    Google Scholar 

  4. Bazaraa MS, Sheraly HD, Shetty CM (1993) Nonlinear programming: theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  5. Wriggers P, Simo JC (1985) A note on tangent stiffness for fully nonlinear contact problems. Commun Appl Numer Methods 1:199–203

    Article  MATH  Google Scholar 

  6. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375

    Article  MATH  MathSciNet  Google Scholar 

  7. Simo JC, Laursen TA (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 37:319–331

    MathSciNet  Google Scholar 

  8. Wriggers P, Zavarise G (1993) Application of augmented Lagrangian techniques for non-linear constitutive laws in contact interface. Commun Numer Methods Eng 9:815–824

    Article  MATH  Google Scholar 

  9. Zavarise G, Wriggers P, Schrefler BA (1995) On augmented Lagrangian algorithms for thermomechanical contact problems with friction. Int J Numer Methods Eng 38:2929–2950

    Article  MATH  Google Scholar 

  10. Zavarise G, Wriggers P (1998) A superlinear convergent Lagrangian procedure for contact problems. Eng Comput 16(1): 88–119

    Article  Google Scholar 

  11. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177:351–381

    Article  MATH  MathSciNet  Google Scholar 

  12. Hüeber S, Wohlmuth B (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194:3147–3155

    Article  MATH  Google Scholar 

  13. Hüeber S, Stadler G, Wohlmuth B (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J Sci Comput 30:572–596

    Article  MATH  MathSciNet  Google Scholar 

  14. Zavarise G De, Lorenzis L (2012) An augmented Lagrangian algorithm for contact mechanics based on linear regression. Int J Numer Methods Eng 91:825–842

    Article  Google Scholar 

  15. Zavarise G, Wriggers P, Schrefler BA (1998) A method for solving contact problems. Int J Numer Methods Eng 42(3):473–498

    Article  MATH  Google Scholar 

  16. Zavarise G, Wriggers P, Stein E, Schrefler BA (1992) Real contact mechanisms and finite-element formulation—a coupled thermomechanical approach. Int J Numer Methods Eng 35(4):767–785

    Article  MATH  Google Scholar 

  17. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Gentle JE (2007) Matrix algebra—theory, computations, and applications in statistics. Springer, New York

    MATH  Google Scholar 

  19. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41(3):407–420

    Article  MATH  Google Scholar 

  20. Johnson KL (1985) Contact mechanics. Cambridge University Press, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Zavarise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavarise, G. The shifted penalty method. Comput Mech 56, 1–17 (2015). https://doi.org/10.1007/s00466-015-1150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1150-5

Keywords

Navigation